| TaBpiticeknit HaykoBui BicHHK Ne 4

48|

UDC 303.064
DOI https://doi.org/10.32782/tnv-tech.2023.4.6

THE MODEL OF INTELLIGENT ORCHESTRATION OF WEB
SERVICES USING THE EXAMPLE OF STATISTICAL RESEARCH

Kasianchuk I. V. — Postgraduate Student
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
ORCID ID: 0009-0000-2215-149X

In organizations engaged in analytical research, the production process almost always
involves statistical calculations, which serve as statistical functions of the business. The presence
of tools for creating a service-oriented architecture raises questions about the development of
publicly accessible means to perform such functions by assembling them into a specific plan or
algorithm for solving a particular statistical task.

To implement such statistical programs, it is worth considering a service-oriented architecture
for creating software services that implement the execution of statistical business functions,
from which a statistical program can be composed using metadata. One notable feature of such
architecture is the ability to distribute tasks according to a specific area of service responsibility,
also known as a domain. This architecture employs an orchestrator — a main service to which
requests are made directly by users, and from which the request should reach its intended
recipient.

As noted in [1], orchestration becomes more complex with an increasing number of web
services in an application. The main challenge lies in establishing the connection between new
services, their tasks, responsibility zones, and the orchestrator. Often, such a change is not
feasible without human intervention, particularly from a programming expert who needs to
reprogram the main service, including deployment and configuration, which takes a significant
amount of additional time.

As an alternative to hard-coded interaction between services, [1] explores an approach in
which discovery occurs through intelligent orchestration. The core of this approach involves each
service providing its semantic description, which the orchestrator analyzes during discovery, and
according to which user requests are redirected.

This article provides an example of an approach to intelligent orchestration of services for
conducting statistical research. Using the issue discussed in [2] as an illustration, the primary
objective is to create an application for aggregating statistical data results over a specific time
interval, incorporating intelligent service discovery to provide query-based result delivery.

Key words: service-oriented architecture, orchestration, statistical research.

Kacovanuyk I. B. Mooens po3ymnoi opkecmpauii 6ed cepeicie na npukiadi cmamucmuuux
odocnidicens

YV opeanizayiax, wo saimaromsca ananimuuHuMu OOCHIOHNCEHHAMU, BUPOOHUYULL Npoyec
Matidice 3a8i#cOU 8KIIOUAE CIMATMUCIMUYHI PO3PAXYHKU, AKI € CIAMUCTRUYHUMU QYHKYIAMU 013-
necy. Haasnicms incmpymenmie 01 cmeopeHHs apxXimekmypu, OpiEHMOBAHOI Ha cepaicl, GUKTU-
KA€e NUMAaHHs w000 po3pooKu 3a2aibHOO0CHYNHUX 3AC0018 0I5t BUKOHAHHS MAKUX OYHKYIU, Wllsi-
Xxom ix 00'eOHanHsa 6 KOHKpemHUll nian abo aneopumm OJid BUPIUEHHs Ne6HOI CIamucmuyHoi
3a0aui.

Mna peanizayii makux cmamucmudHux npocpam 6apmo pO32TAHYMU Cepeic-OpPIEHMOBAHY
apximexmypy, 015l CmMOPeHHs. NPOSPAMHUX CePBICiB, AKI peanizyloms GUKOHAHHA CINAMUCIUY-
HUX 6i3nec-hyHKYitl, 3 AKUX MOICHA CKAACMU CIMAMUCTIUYHY NPOSPAMY, GUKOPUCHIOBYIOHU Memd-
Oani. Ocobnugicmo maxoi apXimexmypu € MONCIUBICIb PO3NOOLIEHHS 3a60AHb 32I0HO NeGHOI
obnacmi 8i0nogioanvHocmi cepsicy, AKy we Hasusaroms oomerom. Taxii apximexkmypi enacmuse
BUKOPUCAHHS OPKECPAMOPA — 20I08HO20 CEPBICY, 00 AKO20 BUKOHYEMbCA 3anum be3nocepeo-
HbO 8I0 Kopucmysaia, ma 8id K020 3anum Mae 0icmamucs aopecamd.

Ak 3azuaueno y [1], opkecmpayis ycKi1aOH0OEMbCA 31 30IbUEHHAM KLIbKOCMI 6€0-cepsicie
6 000amky. OCHOBHOIO NPOONEMOIO € 6CIMAHOBNICHHSL 36 A3KY MIJC HOBUMU cepsicamu, ix 3a0a-
yamu ma 3onamu 8i0N08ioaNbHoCmi, ma opkecmpamopom. Yacmo maxa 3mina Hemoodicausa oe3
8MPYUanHs TOOUHU, KA € eKCNEPMoM 8 00nacmi npoepamyeants, kil nompiono nepenpopa-
MY6amu 20J106HULL CepBic, 6KMOUHO 3 U020 PO32OPMAHHAM MA HANASOOICEHHAM WO 3a0upac
b6aeamo 000amKko8020 4acy.




49

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

Ak anemepnamugy scopcmromy (hard-coded) kodysannio 63aemodii miswe cepsicamu, 6 [1]
PO32NAHYMO NIOXIO 32I0HO 3 SAKUM GUSLGNEHHS 8I00YBAEMbCSL 30 PAXYHOK PO3YMHOI OpKecmpayil.
OcHo06010 niOX00Y € HAOAHMS KOJICHUM 3 CEpPBICi8 CB020 CEMAHMUUHO20 ONUCY, AKULU AHANI3)-
€MbCS OPKECMPAMOPOM NPU 6UABTIEHHE, MA 8ION0GIOHO 00 K020 3ANUM NePeHANPAGISEMbCs 810
Kopucmysaud.

YV 0anitt cmammi 3anpononosano npuxiad nioxody 00 po3ymHol opkecmpayii cepgicie Ois
BUKOHAHHS CIAMUCIUYHUX 00CTiOx0ceHb. Ha npuknadi npobremamuku 0ocnioxcenns 3 [2], 3a
Memy 207106HY 8351M0 CMEOPEHHS 00AmMKY 07151 acpe2ayii pe3ynbmamie CmamucmudHux OaHux Ha
HPOMIJICKY HACY, 3 PO3YMHUM BUAGIEHHS CEPEICcy Ol HAOAHHSA PE3VIbMAmy 3a 3aNUmoM.

Knrwwuosi cnosa: cepsic-opiecnmosana apximekmypa, opKecmpayis, cmamucmuyre O00Ci-
OdHCeHH 3.

Introduction. With the increase in the scale of business systems and the volume
of tasks addressed by such systems, the demands on software have also risen. As a
result, the service-oriented architecture has gained prominence, decomposing a large
monolithic application into several smaller services, each specialized in performing a
specific task for the application.

An important challenge in designing a system with a service-oriented architecture
is selecting the methods of interaction between services. Two classes of interaction
methods are distinguished based on their types: orchestration and choreography. As
the number of services in a system grows, the control logic becomes more complex,
necessitating a flexible solution for establishing control over the system.

Managing a system with a large number of services, coupled with a significant
number of business tasks and their scale, presents a non-trivial challenge that requires
attention from the very stage of designing the system architecture.

Main part of the research. The approach proposed in[1] involves the use of semantic
descriptions of services, which serve as the basis for determining the subsequent path of
the query and processing the collected data. According to the authors' concept, services
are divided into two groups: Semantic Registry Services (SRS) and Cloud Orchestrator
Services (COS).

The role of SRS is to register data about the semantics of services in order to define
the further query path. This group functions as a sort of knowledge base about services
that belong to the COS category. When there are changes in semantics, administrators
input these changes directly into this group. The main tasks of this group include:

» registering and describing services;

» configuring orchestration options;

+ filtering and expanding services;

* automatic scaling;

» storing and defining workflows;

+ extracting data from the knowledge base.

Additionally, this service includes a user interface for convenient interaction through
a browser.

The task of the other COS group is to interpret the workflows defined using SRS.
It also supports their execution, including providing intermediate results and handling
errors. The COS group has access to the service knowledge base of SRS and includes
tasks such as:

» deploying new and modified business process definitions;

+ allocating and releasing memory in the cloud for process execution;

e automatic execution and termination of workflows;

» support for execution statistics and resource monitoring (memory, CPU time,
etc.).




| TaBpiticeknit HaykoBui BicHHK Ne 4

50|

A crucial aspect of building an intelligent orchestration system is the thoughtfulness
of ontological description contracts. The design must incorporate the notion that the
orchestrator should be constantly available, and changing it to define a new contract
entity is highly undesirable (Blue/Green deployment partially addresses the problem
but doesn't bypass the human factor when developing a new version of the orchestrator).

A necessary condition for a contract is compatibility of the language through which
intelligent services will interact with each other. Well-known and widely used solutions
like WSDL, SOAP protocol, and UDDI registry have proven their worth in this field.
However, for a local and small application, it's sufficient to select a format without
unnecessary specifications. For instance, in this article, JSON format is proposed for
interaction in the context of a statistical application.

To extract statistical data for a time period, an application will involve two main
services and an orchestrator (Figure 1). The question of populating databases belonging
to these services is not addressed in this article.

Fig. 1. Architecture of the application for extracting statistical data over time.
This article does not cover the interaction between the data source and the database

The main purpose of the orchestrator is to divide the query based on service metadata,
direct relevant queries to them, and aggregate the results.

In Figure 2, an example of metadata contract is presented, according to which
intelligent discovery of service queries occurs. The idea is that a user provides a query
with the data they expect to receive from the orchestrator. The query is then decomposed
using information about registered services and executed sequentially. For example, to
extract data about a statistical observation from the Data Storage service, identifiers
of time periods are needed. The metadata of the service indicates that it is dependent




Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

|51

on the Time Series service, thus requiring the Time Series service to be queried first.
After obtaining the necessary information from the Time Series service and validating
it according to the schema, the intelligent orchestrator directs it to the data repository.
As aresult, the user receives aggregated query-specific data for further observations.

Fig. 2. Service Metadata for Obtaining Time-Sliced Information

Overall, the following fields can be distinguished in the service contract for obtaining
statistical data:

* input — a list of input parameters for the service, including their names, data
types, validation rules, and so on;

* output — the expected response from the service;

* required — determines whether the service needs to provide data. It indicates
whether execution should stop in case of errors or absence of data;

* dependencies — a list of services that must be executed before the current service.
This field allows building an execution graph for service requests;

* version — a number compared to the registered service description
in the orchestrator. If it's different (usually higher), the old description is replaced with
the provided one;




| TaBpiticeknit HaykoBui BicHHK Ne 4

52|

+ versionOfDependencies — a list of associations in the format "dependency
service name" = "version," needed in case the output data type of a dependent service
changes;

+ other additional fields depending on the task's specifics.

Another important aspect of orchestration is the correctness of service discovery.
Since the contract of an individual service can be updated, it is necessary to validate
it with each version change. This responsibility can be appropriately placed on the
orchestrator, which has information about all services. Validation is proposed to be
carried out based on the following criteria:

— parameter names: output parameters of a service must have names distinct from
input parameters. Violating this rule can lead to parameter overlap in the orchestrator,
resulting in incorrect execution of logic;

— data types of parameters: The output data types of services should match their
corresponding input types. This rule leads to an issue when updating the contracts of
two services simultaneously, where the input parameter of one becomes the output
parameter of another. This scenario might require considering a mechanism to lock the
contract's action using the "versionOfDependencies’ parameter;

— input data of a non-optional service should not solely depend on the output
parameters of optional services. It is necessary to account for a situation where all
optional services return an error (no results), which means the mandatory service won't
receive any input data.

Another advantage of a web service system with ontology-based orchestration is
the possibility of parallelizing processes. Independent services can process information
without waiting for results from others, which significantly improves execution time in
multi-stage processes.

Further Research. The provided architecture example covers only a partial case
of constructing a process for extracting statistical data over time. The list of potential
improvements and research is not limited due to the diverse requirements of any
information system. Among the issues not mentioned in this study, the following are
worth highlighting:

— implementation of an aggregator for collected data from various services before
returning the result;

— database population (data segregation) from data sources;

— implementation of service scalability, including parallel execution of algorithms
on data;

— fault tolerance — orchestrator behavior in case of failure of a web service, including
maintaining communication with it;

— process of updating the orchestrator's codebase;

— writing real data processing algorithms.

Conclusions. This article has presented an architecture example of intelligent service
orchestration using the case of obtaining statistical data over time. The solution for
service interaction through an orchestrator and the protocol for information exchange
via metadata have been described.

Further research will explore expanding the system's capabilities for more complex
data processing algorithms, as well as addressing other aspects such as fault tolerance,
scalability, orchestrator updates, and more.




Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

|53

BIBLIOGRAPHY:

1. A. Petrenko and B. Bulakh, "Intelligent Service Discovery and Orchestration,"
2018 IEEE First International Conference on System Analysis & Intelligent Computing
(SAIC), Kyiv, Ukraine, 2018, pp. 1-5, doi: 10.1109/SAIC.2018.8516723.

2. Lumpova,T., & Kasianchuk,I. (2023). Finding a conceptual approach to developing
an architecture of general-purpose services for economic researches. Technology
Audit and Production Reserves, 3(4(71), 25-31. https://doi.org/10.15587/2706-5448.
2023.283983

3. JlymmoBa T. I. IlepcrieKTHBH CTBOPEHHS CTATUCTHYHHMX CEPBICIB 3arajibHOTO
KOPHUCTYBaHHS 1151 eKoHOMiuHMX pociimkens / T. 1. Jlymmosa, I. B. Kacesauyk. 2023.
Ne 33. C. 26-39.

REFERENCES:

1. A. Petrenko and B. Bulakh (2018) "Intelligent Service Discovery and Orches-
tration", 2018 IEEE First International Conference on System Analysis & Intelligent
Computing (SAIC), Kyiv, UKraine, pp. 1-5, doi: 10.1109/SAIC.2018.8516723.

2. Lumpova, T., & Kasianchuk, I. (2023). Finding a conceptual approach to deve-
loping an architecture of general-purpose services for economic researches. Techno-
logy Audit and Production Reserves, 3(4(71), 25-31. https://doi.org/10.15587/2706-
5448.2023.283983

3. Lumpova T. 1. (2023) Perspektyvy stvorennia statystychnykh servisiv zahalnoho
korystuvannia dli ekonomichnykh doslidzhen / T. I. Lumpova, I. V. Kasianchuk. Ne 33.
p. 26-39.




