
25
Комп’ютерні науки та інформаційні технології

UDC 004.946.2
DOI https://doi.org/10.32782/tnv-tech.2024.5.3

IMPROVEMENT OF 3D GRAPHICS IMAGE OPTIMIZATION
TECHNOLOGY

Hrabovskyi Ye. M. – PhD, Associate Professor at the Department of Multimedia Systems
and Technologies of the Simon Kuznets Kharkiv National University of Economics
ORCID ID: 0000-0001-7799-7249
Scopus-Author ID: 57201773546

Kobzev I. V. – PhD, Associate Professor at the Department of Multimedia Systems
and Technologies of the Simon Kuznets Kharkiv National University of Economics
ORCID ID: 0000-0002-7182-5814
Scopus-Author ID: 57226248104

The article proposes the improvement of the technology of image optimization of 3D graphics.
The object of research in this article is the process of using a software component to improve the
technology of image optimization of 3D graphics. The practical significance of this study lies
in the development of recommendations for improving the technology of image optimization of
3D graphics. The article provides a justification for the need to optimize graphic objects in such
a way that they look realistic, but at the same time do not overload the hardware. The problems
of having a high number of polygons, textures and complex lighting effects, which can create
a significant load on the graphics processor, are considered. The importance of optimizing
3D graphics images to reduce the demands on computer computing resources, such as RAM and
video card memory, is considered. The article describes the impact of optimizing 3D graphics
images on reducing rendering time, which is especially important in industries that require high
data processing speed, such as architectural modeling, simulations, and virtual reality. New
rendering approaches such as real-time ray tracing and voxel-based rendering are covered. The
characteristic features of the polygonal model for representing 3D objects are systematized. The
need to use compression and texture optimization as important elements in 3D graphics that
directly affect rendering performance and memory usage is substantiated. The article proposes
a calculation of the effectiveness of using a texture atlas. In this study, mathematical modeling of
polygons representing 3D objects was carried out. The article provides a lighting precalculation
technique that is used for complex scenes, which allows to reduce the load on the system during
the execution of the program. In this work, mathematical modeling of ray tracing processes is
presented, which allows to describe the interaction of light with the surfaces of objects, taking
into account reflection and refraction. The article presents a technology for optimizing polygonal
grids, which is directly related to the number of polygons that make up the object. The improved
technology of image optimization of 3D graphics acts as a scientific result of the conducted
research.

Key words: 3D graphics, modeling, texture atlas, optimization, lighting, rendering, complex
scenes.

Грабовський Є. М., Кобзев І. В. Вдосконалення технології оптимізації зображень
3D-графіки

У статті запропоновано вдосконалення технології оптимізації зображень 3D-гра-
фіки. У якості об'єкта дослідження в даній статті виступає процес застосування
програмної складової для вдосконалення технології оптимізації зображень 3D-графіки.
Практична значущість даного дослідження полягає в розробленні рекомендацій стосовно
вдосконалення технології оптимізації зображень 3D-графіки. У статті наведено обгрун-
тування необхідності оптимізувати графічні об'єкти таким чином, щоб вони виглядали
реалістично, але при цьому не перевантажували апаратне забезпечення. Розглянуто про-
блеми наявності високої кількості полігонів, текстур та складних світлових ефектів, які
можуть створювати значне навантаження на графічний процесор. Розглянуто значення
оптимізації 3D-графічних зображень для зниження вимог до обчислювальних ресурсів
комп’ютера, таких як оперативна пам'ять та пам'ять відеокарти. У статті описаний
вплив оптимізації 3D-графічних зображень на зниження часу рендерингу, що є особливо

26
Таврійський науковий вісник № 5

важливим у галузях, де потрібна висока швидкість обробки даних, таких як архітек-
турне моделювання, симуляції та віртуальна реальність. Розглянуто новітні підходи до
рендерингу, такі як трасування променів у реальному часі та рендеринг на основі воксе-
лів. Систематизовано характерні особливості полігональної моделі для представлення
3D-об'єктів. Обґрунтовано необхідність використання компресії та оптимізації текстур
як важливих елементів у 3D-графіці, що безпосередньо впливають на продуктивність
рендерингу та використання пам’яті. У статті запропоновано розрахунок ефективності
використання текстурного атласу. В даному дослідженні проведено математичне моде-
лювання полігонів представлення 3D-об'єктів. У статті наведено техніку попереднього
розрахунку освітлення, яка використовується для складних сцен, що дозволяє знизити
навантаження на систему під час виконання програми. В даній роботі подано матема-
тичне моделювання процесів трасування променів, що дозволяє здійснити опис взаємо-
дії світла з поверхнями об'єктів, враховуючи відбиття та заломлення. В статті подана
технологія оптимізації полігональних сіток, яка прямо пов’язана з кількістю полігонів,
що складають об’єкт. У якості наукового результату проведеного дослідження виступає
вдосконалена технологія оптимізації зображень 3D-графіки.

Ключові слова: 3D-графіка, моделювання, текстурний атлас, оптимізація, освіт-
лення, рендеринг, складні сцени.

Formulation of the problem. 3D graphics are an integral part of many industries
today, including gaming, film, virtual reality, and architectural modeling. However,
increasing requirements for image quality and rendering speed create new challenges
for developers and designers. One of the key aspects of achieving high performance is
optimizing 3D graphics images.

3D graphics have a huge impact on many industries in the modern world, includ-
ing computer games, virtual reality (VR), augmented reality (AR), cinematography and
architectural modeling. Optimizing 3D images is critical to achieving realistic scenes
without sacrificing performance.

3D graphics are actively used in architectural modeling, medicine and scientific
research, where visualization is of key importance. For these areas, it is important to
provide the most realistic images without losing quality during optimization. Mod-
ern optimization algorithms, in particular texture and polygon compression methods,
allow you to achieve this balance. This significantly improves the user experience and
increases the efficiency of the work of specialists in various fields.

Artificial intelligence and machine learning also play an important role in improving
3D graphics optimization technologies . For example, neural networks are able to auto-
matically identify the least important elements of an image and optimize them without
affecting the overall quality. This provides new opportunities for creating high-quality
graphic content with minimal resource consumption. 3D graphics image optimization
technologies have great potential for development, which makes them an important
direction in modern research and development.

Therefore, the relevance of improving the technology of image optimization of 3D
graphics is due to the growing requirements for the quality of visualization and the
speed of data processing in many areas.

Analysis of recent research and publications. In studies [1–3], approaches are pro-
posed to create an adaptive interface of web-based tools for optimizing graphic images.
A description of specific algorithms, on the basis of which certain elements of 3D
graphics optimization technology can be designed, is presented in works [4, 5]. Studies
[6, 7] provide recommendations on the use of 3D graphics to create the interface of web
applications and real-time tools for navigating in a virtual environment. Scientific works
[8, 9] contain methodological recommendations for substantiating an innovative strat-
egy for the development of information technologies as a basis for further improvement

27
Комп’ютерні науки та інформаційні технології

of 3D graphics optimization technology . Practical recommendations for the use of
Workflow, which can be used to optimize 3D graphic images, are given in studies
[10, 11].

The analysis of literary sources shows that in the specialized literature there are no
methodological recommendations for improving the technology of image optimization
of 3D graphics.

Purpose and task statement. The aim of the work is to improve the image optimi-
zation technology of 3D graphics.

The object of the study is the process of applying the software component to improve
the technology of image optimization of 3D graphics.

The subject of research is the technology of image optimization of 3D graphics.
Presentation of the main research material. Optimization in 3D graphics is a key

aspect of developing any application that uses 3D models, as it directly affects per-
formance and user experience. High polygon counts, textures, and complex lighting
effects can put a heavy load on the graphics processing unit (GPU), resulting in slower
framerates and lag. To ensure a smooth display of the scene, especially in real time, it is
necessary to optimize the objects so that they look realistic, but at the same time do not
overload the hardware.

In addition to ensuring performance, optimization is important to reduce the demands
on computing resources such as RAM and graphics card memory. This allows for better
cross-platform compatibility, including resource-constrained mobile devices. Texture
compression, LOD reduction, and polygon model simplification can be used to maintain
a high level of visual quality even on weaker devices. This makes optimization critical
for developers looking to strike a balance between image quality and accessibility to a
wide audience.

The optimization also helps reduce rendering times, which is especially important
in industries that require high data processing speeds, such as architectural modeling,
simulations, and virtual reality (VR). By reducing the time required to render complex
scenes, the optimization allows you to focus on improving detail and interactivity, cre-
ating a more realistic and immersive experience for users. Thus, optimization in 3D
graphics provides performance, availability and quality, which makes it an integral part
of the process of developing visual content.

Optimizing images in 3D graphics consists in reducing the load on hardware
resources, while ensuring maximum image quality. This is especially important for real-
time, where every delay can negatively affect the user experience. The main aspects to
optimize are polygons, textures, lighting and shadows, and shader-based rendering.

Optimization of polygons, or «LOD» (Level of Detail), consists in reducing the
number of polygons in objects located at a great distance from the camera. This allows
you to significantly reduce the load on the graphics processor (GPU), which is espe-
cially important for games and applications with an open world. Modern methods use
dynamic displacement algorithms that automatically adapt the level of detail depending
on the position of the camera.

Textures take up a significant portion of the memory used when rendering a scene.
Using compression methods such as DXT (S3TC), ASTC or the latest formats based
on machine learning allows you to reduce the size of textures without losing quality. In
addition, the use of texture atlases allows you to avoid additional loading and switching
of textures, which speeds up rendering.

Lighting and shaders are important components of 3D scenes that affect the final
image quality. Traditional lighting is often replaced by approaches that use global

28
Таврійський науковий вісник № 5

lighting and physically correct rendering techniques (PBR). Using such techniques as
baking lighting or Light Probes, allows you to preserve the quality of lighting effects
with minimal computational costs. Shader optimization consists in simplifying complex
operations and using a computer buffer (G – buffer) to calculate lighting in real time.

Rendering approaches, such as real-time ray tracing and voxel-based rendering,
allow for significant improvements in image quality, but require significant computing
resources. To reduce the load on the system, hybrid approaches combining traditional
rendering and ray tracing are used. Artificial intelligence algorithms, such as DLSS
(Deep Learning Great Sampling) from NVIDIA, which allow you to render images in a
lower resolution and increase them without a significant loss of quality.

Machine learning and neural networks are becoming increasingly popular for optimiz-
ing 3D images. They allow you to automate processes that previously required signifi-
cant human involvement, such as creating LOD models, generating normalized maps, and
predicting complex lighting effects. Thanks to machine learning, it is possible to achieve
optimization of image quality without significantly increasing the load on the hardware.

Although modern optimization methods have greatly improved the quality and per-
formance of 3D images, there are still many challenges. The development of new algo-
rithms and the integration of machine learning into the rendering process require signif-
icant computing resources and time to train models. However, with the development of
cloud computing and more powerful graphics processors, there are new opportunities to
further improve the optimization process.

The main goal of image optimization in 3D graphics is to reduce the load on the
graphics processor (GPU) and the central processor (CPU), while maintaining maxi-
mum image quality. This allows you to achieve smooth animation, avoid delays and
ensure high quality graphics in real time.

A polygonal model is the basis for representing 3D objects. Polygons are usually
represented by triangles that are joined to create surfaces. Optimization consists in
reducing the number of polygons without losing the detail of objects.

The formula for the area of a triangle based on the coordinates of the three vertices
should look like this:

The formula for the area of a triangle based on the coordinates of the three

vertices should look like this:

𝑆𝑆𝑆𝑆 =
1
2 |(𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1)(𝑦𝑦𝑦𝑦3 − 𝑦𝑦𝑦𝑦1) − (𝑥𝑥𝑥𝑥3 − 𝑥𝑥𝑥𝑥1)(𝑦𝑦𝑦𝑦2 − 𝑦𝑦𝑦𝑦1)|

where(𝑥𝑥𝑥𝑥1; 𝑦𝑦𝑦𝑦1), (𝑥𝑥𝑥𝑥2; 𝑦𝑦𝑦𝑦2) and (𝑥𝑥𝑥𝑥3,𝑦𝑦𝑦𝑦3) are the coordinates of the vertices of the

triangle .

Algorithms for reducing the number of polygons (mesh simplification), such

as Quadric Error Metrics (QEM), which calculate the error between the original and

simplified models.

Textures are used to add detail to 3D objects. Reducing the size of textures is

an important optimization step, as it allows you to reduce the amount of video

memory (VRAM) used.

Texture compression and optimization are important elements in 3D graphics

that directly affect rendering performance and memory usage. Textures are two-

dimensional images superimposed on the surface of 3D objects to give them a more

realistic appearance. They are used to convey characteristics such as color,

glossiness, normals, and reflection maps. Because textures are often high-resolution,

their volume can significantly exceed the volume of the geometry of the model itself.

This creates high requirements for video memory (VRAM), especially when

working with large scenes or in real time. Hence the need for texture compression,

which allows you to reduce their size without a significant loss of quality.

Texture compression is done using special algorithms such as DXT (S3TC),

ASTC and the latest methods that use machine learning to reduce file sizes. For

example, the DXT method uses block compression, which reduces texture size while

preserving color and alpha channel data.

The texture compression formula looks like this:

𝑅𝑅𝑅𝑅 =
𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

where R is the compression ratio, 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the size of the initial texture,

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the size of the compressed texture.

where

The formula for the area of a triangle based on the coordinates of the three

vertices should look like this:

𝑆𝑆𝑆𝑆 =
1
2 |(𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1)(𝑦𝑦𝑦𝑦3 − 𝑦𝑦𝑦𝑦1) − (𝑥𝑥𝑥𝑥3 − 𝑥𝑥𝑥𝑥1)(𝑦𝑦𝑦𝑦2 − 𝑦𝑦𝑦𝑦1)|

where(𝑥𝑥𝑥𝑥1; 𝑦𝑦𝑦𝑦1), (𝑥𝑥𝑥𝑥2; 𝑦𝑦𝑦𝑦2) and (𝑥𝑥𝑥𝑥3,𝑦𝑦𝑦𝑦3) are the coordinates of the vertices of the

triangle .

Algorithms for reducing the number of polygons (mesh simplification), such

as Quadric Error Metrics (QEM), which calculate the error between the original and

simplified models.

Textures are used to add detail to 3D objects. Reducing the size of textures is

an important optimization step, as it allows you to reduce the amount of video

memory (VRAM) used.

Texture compression and optimization are important elements in 3D graphics

that directly affect rendering performance and memory usage. Textures are two-

dimensional images superimposed on the surface of 3D objects to give them a more

realistic appearance. They are used to convey characteristics such as color,

glossiness, normals, and reflection maps. Because textures are often high-resolution,

their volume can significantly exceed the volume of the geometry of the model itself.

This creates high requirements for video memory (VRAM), especially when

working with large scenes or in real time. Hence the need for texture compression,

which allows you to reduce their size without a significant loss of quality.

Texture compression is done using special algorithms such as DXT (S3TC),

ASTC and the latest methods that use machine learning to reduce file sizes. For

example, the DXT method uses block compression, which reduces texture size while

preserving color and alpha channel data.

The texture compression formula looks like this:

𝑅𝑅𝑅𝑅 =
𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

where R is the compression ratio, 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the size of the initial texture,

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the size of the compressed texture.

 and

The formula for the area of a triangle based on the coordinates of the three

vertices should look like this:

𝑆𝑆𝑆𝑆 =
1
2 |(𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1)(𝑦𝑦𝑦𝑦3 − 𝑦𝑦𝑦𝑦1) − (𝑥𝑥𝑥𝑥3 − 𝑥𝑥𝑥𝑥1)(𝑦𝑦𝑦𝑦2 − 𝑦𝑦𝑦𝑦1)|

where(𝑥𝑥𝑥𝑥1; 𝑦𝑦𝑦𝑦1), (𝑥𝑥𝑥𝑥2; 𝑦𝑦𝑦𝑦2) and (𝑥𝑥𝑥𝑥3,𝑦𝑦𝑦𝑦3) are the coordinates of the vertices of the

triangle .

Algorithms for reducing the number of polygons (mesh simplification), such

as Quadric Error Metrics (QEM), which calculate the error between the original and

simplified models.

Textures are used to add detail to 3D objects. Reducing the size of textures is

an important optimization step, as it allows you to reduce the amount of video

memory (VRAM) used.

Texture compression and optimization are important elements in 3D graphics

that directly affect rendering performance and memory usage. Textures are two-

dimensional images superimposed on the surface of 3D objects to give them a more

realistic appearance. They are used to convey characteristics such as color,

glossiness, normals, and reflection maps. Because textures are often high-resolution,

their volume can significantly exceed the volume of the geometry of the model itself.

This creates high requirements for video memory (VRAM), especially when

working with large scenes or in real time. Hence the need for texture compression,

which allows you to reduce their size without a significant loss of quality.

Texture compression is done using special algorithms such as DXT (S3TC),

ASTC and the latest methods that use machine learning to reduce file sizes. For

example, the DXT method uses block compression, which reduces texture size while

preserving color and alpha channel data.

The texture compression formula looks like this:

𝑅𝑅𝑅𝑅 =
𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

where R is the compression ratio, 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the size of the initial texture,

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the size of the compressed texture.

 are the coordinates of the vertices of the triangle .
Algorithms for reducing the number of polygons (mesh simplification), such as

Quadric Error Metrics (QEM), which calculate the error between the original and sim-
plified models.

Textures are used to add detail to 3D objects. Reducing the size of textures is an
important optimization step, as it allows you to reduce the amount of video memory
(VRAM) used.

Texture compression and optimization are important elements in 3D graphics that
directly affect rendering performance and memory usage. Textures are two-dimensional
images superimposed on the surface of 3D objects to give them a more realistic appear-
ance. They are used to convey characteristics such as color, glossiness, normals, and
reflection maps. Because textures are often high-resolution, their volume can signifi-
cantly exceed the volume of the geometry of the model itself. This creates high require-
ments for video memory (VRAM), especially when working with large scenes or in real
time. Hence the need for texture compression, which allows you to reduce their size
without a significant loss of quality.

29
Комп’ютерні науки та інформаційні технології

Texture compression is done using special algorithms such as DXT (S3TC), ASTC
and the latest methods that use machine learning to reduce file sizes. For example, the
DXT method uses block compression, which reduces texture size while preserving color
and alpha channel data.

The texture compression formula looks like this:

The formula for the area of a triangle based on the coordinates of the three

vertices should look like this:

𝑆𝑆𝑆𝑆 =
1
2 |(𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1)(𝑦𝑦𝑦𝑦3 − 𝑦𝑦𝑦𝑦1) − (𝑥𝑥𝑥𝑥3 − 𝑥𝑥𝑥𝑥1)(𝑦𝑦𝑦𝑦2 − 𝑦𝑦𝑦𝑦1)|

where(𝑥𝑥𝑥𝑥1; 𝑦𝑦𝑦𝑦1), (𝑥𝑥𝑥𝑥2; 𝑦𝑦𝑦𝑦2) and (𝑥𝑥𝑥𝑥3,𝑦𝑦𝑦𝑦3) are the coordinates of the vertices of the

triangle .

Algorithms for reducing the number of polygons (mesh simplification), such

as Quadric Error Metrics (QEM), which calculate the error between the original and

simplified models.

Textures are used to add detail to 3D objects. Reducing the size of textures is

an important optimization step, as it allows you to reduce the amount of video

memory (VRAM) used.

Texture compression and optimization are important elements in 3D graphics

that directly affect rendering performance and memory usage. Textures are two-

dimensional images superimposed on the surface of 3D objects to give them a more

realistic appearance. They are used to convey characteristics such as color,

glossiness, normals, and reflection maps. Because textures are often high-resolution,

their volume can significantly exceed the volume of the geometry of the model itself.

This creates high requirements for video memory (VRAM), especially when

working with large scenes or in real time. Hence the need for texture compression,

which allows you to reduce their size without a significant loss of quality.

Texture compression is done using special algorithms such as DXT (S3TC),

ASTC and the latest methods that use machine learning to reduce file sizes. For

example, the DXT method uses block compression, which reduces texture size while

preserving color and alpha channel data.

The texture compression formula looks like this:

𝑅𝑅𝑅𝑅 =
𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

where R is the compression ratio, 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the size of the initial texture,

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the size of the compressed texture.

where R is the compression ratio,

The formula for the area of a triangle based on the coordinates of the three

vertices should look like this:

𝑆𝑆𝑆𝑆 =
1
2 |(𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1)(𝑦𝑦𝑦𝑦3 − 𝑦𝑦𝑦𝑦1) − (𝑥𝑥𝑥𝑥3 − 𝑥𝑥𝑥𝑥1)(𝑦𝑦𝑦𝑦2 − 𝑦𝑦𝑦𝑦1)|

where(𝑥𝑥𝑥𝑥1; 𝑦𝑦𝑦𝑦1), (𝑥𝑥𝑥𝑥2; 𝑦𝑦𝑦𝑦2) and (𝑥𝑥𝑥𝑥3,𝑦𝑦𝑦𝑦3) are the coordinates of the vertices of the

triangle .

Algorithms for reducing the number of polygons (mesh simplification), such

as Quadric Error Metrics (QEM), which calculate the error between the original and

simplified models.

Textures are used to add detail to 3D objects. Reducing the size of textures is

an important optimization step, as it allows you to reduce the amount of video

memory (VRAM) used.

Texture compression and optimization are important elements in 3D graphics

that directly affect rendering performance and memory usage. Textures are two-

dimensional images superimposed on the surface of 3D objects to give them a more

realistic appearance. They are used to convey characteristics such as color,

glossiness, normals, and reflection maps. Because textures are often high-resolution,

their volume can significantly exceed the volume of the geometry of the model itself.

This creates high requirements for video memory (VRAM), especially when

working with large scenes or in real time. Hence the need for texture compression,

which allows you to reduce their size without a significant loss of quality.

Texture compression is done using special algorithms such as DXT (S3TC),

ASTC and the latest methods that use machine learning to reduce file sizes. For

example, the DXT method uses block compression, which reduces texture size while

preserving color and alpha channel data.

The texture compression formula looks like this:

𝑅𝑅𝑅𝑅 =
𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

where R is the compression ratio, 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the size of the initial texture,

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the size of the compressed texture.

 is the size of the initial texture,

The formula for the area of a triangle based on the coordinates of the three

vertices should look like this:

𝑆𝑆𝑆𝑆 =
1
2 |(𝑥𝑥𝑥𝑥2 − 𝑥𝑥𝑥𝑥1)(𝑦𝑦𝑦𝑦3 − 𝑦𝑦𝑦𝑦1) − (𝑥𝑥𝑥𝑥3 − 𝑥𝑥𝑥𝑥1)(𝑦𝑦𝑦𝑦2 − 𝑦𝑦𝑦𝑦1)|

where(𝑥𝑥𝑥𝑥1; 𝑦𝑦𝑦𝑦1), (𝑥𝑥𝑥𝑥2; 𝑦𝑦𝑦𝑦2) and (𝑥𝑥𝑥𝑥3,𝑦𝑦𝑦𝑦3) are the coordinates of the vertices of the

triangle .

Algorithms for reducing the number of polygons (mesh simplification), such

as Quadric Error Metrics (QEM), which calculate the error between the original and

simplified models.

Textures are used to add detail to 3D objects. Reducing the size of textures is

an important optimization step, as it allows you to reduce the amount of video

memory (VRAM) used.

Texture compression and optimization are important elements in 3D graphics

that directly affect rendering performance and memory usage. Textures are two-

dimensional images superimposed on the surface of 3D objects to give them a more

realistic appearance. They are used to convey characteristics such as color,

glossiness, normals, and reflection maps. Because textures are often high-resolution,

their volume can significantly exceed the volume of the geometry of the model itself.

This creates high requirements for video memory (VRAM), especially when

working with large scenes or in real time. Hence the need for texture compression,

which allows you to reduce their size without a significant loss of quality.

Texture compression is done using special algorithms such as DXT (S3TC),

ASTC and the latest methods that use machine learning to reduce file sizes. For

example, the DXT method uses block compression, which reduces texture size while

preserving color and alpha channel data.

The texture compression formula looks like this:

𝑅𝑅𝑅𝑅 =
𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

where R is the compression ratio, 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the size of the initial texture,

𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the size of the compressed texture.

 is
the size of the compressed texture.

Common compression methods include DXT (S3TC) and ASTC, which use special-
ized compression algorithms to preserve color data with minimal loss of quality.

For example, if the original size of the texture is 16 MB and the compressed size is
4 MB, the compression ratio is 4, which means a fourfold reduction in size. This signif-
icantly reduces memory usage and allows you to store more textures in video memory,
improving rendering speed.

Texture optimization also includes the use of texture atlases – large images that
combine multiple textures into a single image. This allows you to reduce the number
of texture switches during rendering, which has a positive effect on performance, espe-
cially in large scenes. An important aspect is the correct placement of textures on the
atlas and the minimization of empty space, which can be determined using the texture
atlas efficiency formula:

The formula for the effectiveness of using a texture atlas:The formula for the effectiveness of using a texture atlas:

𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

where 𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the efficiency of the atlas, 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 is the area and textures,
𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the area of the entire texture atlas.

High efficiency means that more of the atlas space is used for useful
information, minimizing resource wastage.

compression and optimization are closely related to the mathematical
modeling of polygons and the importance of optimization in 3D graphics . Because
texture compression reduces the memory load, it frees up resources to handle more
complex geometry. Optimized polygons and textures work together to achieve the
balance between quality and performance that is critical for applications with high
real-time demands, such as gaming and virtual reality (VR). Compression
techniques help preserve detail and provide fast access to data, allowing you to
achieve realistic rendering of complex scenes without overloading the GPU and
maintaining high frame rates.

Lighting significantly affects the display quality of 3D scenes. Realistic
lighting is achieved using global lighting (Global Illumination, GI), which takes into
account the reflection of light from various surfaces. Physically correct rendering
(Physically – Based Rendering, PBR) allows you to model materials that react to
light as closely as possible to real ones.

Lighting and shaders are key elements in creating realistic images in 3D
graphics . They are responsible for the interaction of light with the surfaces of
objects, determining how colors, shadows, reflections and other lighting effects will
look. Lighting is based on physical principles such as reflection and refraction of
light to create visually believable scenes. At the same time, shaders are used to
program these effects on GPU, providing detailed lighting processing for each pixel
or vertex. This allows you to maintain a high level of image quality, even in complex
scenes.

Lighting should be calculated using the Lambert model (for diffuse lighting):
𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙ℎ𝑎𝑎𝑎𝑎 ∙ max(0,𝑛𝑛𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙)

where

The formula for the effectiveness of using a texture atlas:

𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

where 𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the efficiency of the atlas, 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 is the area and textures,
𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the area of the entire texture atlas.

High efficiency means that more of the atlas space is used for useful
information, minimizing resource wastage.

compression and optimization are closely related to the mathematical
modeling of polygons and the importance of optimization in 3D graphics . Because
texture compression reduces the memory load, it frees up resources to handle more
complex geometry. Optimized polygons and textures work together to achieve the
balance between quality and performance that is critical for applications with high
real-time demands, such as gaming and virtual reality (VR). Compression
techniques help preserve detail and provide fast access to data, allowing you to
achieve realistic rendering of complex scenes without overloading the GPU and
maintaining high frame rates.

Lighting significantly affects the display quality of 3D scenes. Realistic
lighting is achieved using global lighting (Global Illumination, GI), which takes into
account the reflection of light from various surfaces. Physically correct rendering
(Physically – Based Rendering, PBR) allows you to model materials that react to
light as closely as possible to real ones.

Lighting and shaders are key elements in creating realistic images in 3D
graphics . They are responsible for the interaction of light with the surfaces of
objects, determining how colors, shadows, reflections and other lighting effects will
look. Lighting is based on physical principles such as reflection and refraction of
light to create visually believable scenes. At the same time, shaders are used to
program these effects on GPU, providing detailed lighting processing for each pixel
or vertex. This allows you to maintain a high level of image quality, even in complex
scenes.

Lighting should be calculated using the Lambert model (for diffuse lighting):
𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙ℎ𝑎𝑎𝑎𝑎 ∙ max(0,𝑛𝑛𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙)

is the efficiency of the atlas,
The formula for the effectiveness of using a texture atlas:

𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

where 𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the efficiency of the atlas, 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 is the area and textures,
𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the area of the entire texture atlas.

High efficiency means that more of the atlas space is used for useful
information, minimizing resource wastage.

compression and optimization are closely related to the mathematical
modeling of polygons and the importance of optimization in 3D graphics . Because
texture compression reduces the memory load, it frees up resources to handle more
complex geometry. Optimized polygons and textures work together to achieve the
balance between quality and performance that is critical for applications with high
real-time demands, such as gaming and virtual reality (VR). Compression
techniques help preserve detail and provide fast access to data, allowing you to
achieve realistic rendering of complex scenes without overloading the GPU and
maintaining high frame rates.

Lighting significantly affects the display quality of 3D scenes. Realistic
lighting is achieved using global lighting (Global Illumination, GI), which takes into
account the reflection of light from various surfaces. Physically correct rendering
(Physically – Based Rendering, PBR) allows you to model materials that react to
light as closely as possible to real ones.

Lighting and shaders are key elements in creating realistic images in 3D
graphics . They are responsible for the interaction of light with the surfaces of
objects, determining how colors, shadows, reflections and other lighting effects will
look. Lighting is based on physical principles such as reflection and refraction of
light to create visually believable scenes. At the same time, shaders are used to
program these effects on GPU, providing detailed lighting processing for each pixel
or vertex. This allows you to maintain a high level of image quality, even in complex
scenes.

Lighting should be calculated using the Lambert model (for diffuse lighting):
𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙ℎ𝑎𝑎𝑎𝑎 ∙ max(0,𝑛𝑛𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙)

 is the area and textures,

The formula for the effectiveness of using a texture atlas:

𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1
𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

where 𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the efficiency of the atlas, 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 is the area and textures,
𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the area of the entire texture atlas.

High efficiency means that more of the atlas space is used for useful
information, minimizing resource wastage.

compression and optimization are closely related to the mathematical
modeling of polygons and the importance of optimization in 3D graphics . Because
texture compression reduces the memory load, it frees up resources to handle more
complex geometry. Optimized polygons and textures work together to achieve the
balance between quality and performance that is critical for applications with high
real-time demands, such as gaming and virtual reality (VR). Compression
techniques help preserve detail and provide fast access to data, allowing you to
achieve realistic rendering of complex scenes without overloading the GPU and
maintaining high frame rates.

Lighting significantly affects the display quality of 3D scenes. Realistic
lighting is achieved using global lighting (Global Illumination, GI), which takes into
account the reflection of light from various surfaces. Physically correct rendering
(Physically – Based Rendering, PBR) allows you to model materials that react to
light as closely as possible to real ones.

Lighting and shaders are key elements in creating realistic images in 3D
graphics . They are responsible for the interaction of light with the surfaces of
objects, determining how colors, shadows, reflections and other lighting effects will
look. Lighting is based on physical principles such as reflection and refraction of
light to create visually believable scenes. At the same time, shaders are used to
program these effects on GPU, providing detailed lighting processing for each pixel
or vertex. This allows you to maintain a high level of image quality, even in complex
scenes.

Lighting should be calculated using the Lambert model (for diffuse lighting):
𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙ℎ𝑎𝑎𝑎𝑎 ∙ max(0,𝑛𝑛𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙)

 is the
area of the entire texture atlas.

High efficiency means that more of the atlas space is used for useful information,
minimizing resource wastage.

Сompression and optimization are closely related to the mathematical modeling of
polygons and the importance of optimization in 3D graphics. Because texture compres-
sion reduces the memory load, it frees up resources to handle more complex geometry.
Optimized polygons and textures work together to achieve the balance between quality
and performance that is critical for applications with high real-time demands, such as
gaming and virtual reality (VR). Compression techniques help preserve detail and pro-
vide fast access to data, allowing you to achieve realistic rendering of complex scenes
without overloading the GPU and maintaining high frame rates.

Lighting significantly affects the display quality of 3D scenes. Realistic lighting is
achieved using global lighting (Global Illumination, GI), which takes into account the reflec-
tion of light from various surfaces. Physically correct rendering (Physically – Based Render-
ing, PBR) allows you to model materials that react to light as closely as possible to real ones.

Lighting and shaders are key elements in creating realistic images in 3D graphics.
They are responsible for the interaction of light with the surfaces of objects, determining
how colors, shadows, reflections and other lighting effects will look. Lighting is based
on physical principles such as reflection and refraction of light to create visually believ-
able scenes. At the same time, shaders are used to program these effects on GPU, pro-
viding detailed lighting processing for each pixel or vertex. This allows you to maintain
a high level of image quality, even in complex scenes.

30
Таврійський науковий вісник № 5

Lighting should be calculated using the Lambert model (for diffuse lighting):
𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑡𝑡 ∙ max(0,𝑛𝑛𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙)

where𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 – diffuse light intensity, 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑡𝑡 is the intensity where 𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑡𝑡 ∙ max(0,𝑛𝑛𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙)

where𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 – diffuse light intensity, 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑡𝑡 is the intensity

– diffuse light intensity, 𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑡𝑡 ∙ max(0,𝑛𝑛𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙)

where𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 – diffuse light intensity, 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑡𝑡 is the intensity

is the intensity of the light source, 𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑡𝑡 ∙ max(0,𝑛𝑛𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙)

where𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 – diffuse light intensity, 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑡𝑡 is the intensity
 is the

normal vector to the surface, 𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑡𝑡 ∙ max(0,𝑛𝑛𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙)

where𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 – diffuse light intensity, 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝑡𝑡 is the intensity
 is the direction vector to the light source.

For complex scenes, the lighting precalculation technique is used (light baking),
which allows you to reduce the load on the system during program execution.

Lighting and shaders are closely related to the optimization of polygons and tex-
tures, as the correct use of shaders can significantly reduce the computational comple-
xity of a scene, while still keeping it visually appealing. By using methods like normal
maps, developers can reduce the number of polygons without sacrificing detail, which
is important for high rendering performance. At the same time, texture compression
preserves image quality while reducing memory usage, allowing more efficient use of
computing resources for complex lighting effects. Ultimately, optimizing lighting and
textures allows you to create more realistic and productive visual scenes, which is criti-
cal for applications with high demands on graphics quality and performance.

The improvement of rendering technologies is an important stage in the develop-
ment of 3D graphics, as it directly affects the quality of scene display and the perfor-
mance of graphic applications. With the development of hardware and image process-
ing algorithms, new rendering methods appear that allow creating more realistic visual
effects. One of these methods is real – time ray tracing ray tracing), which allows you to
accurately simulate the behavior of light, including reflections, refractions and shadows.
Unlike traditional rasterization, which renders objects using triangles, ray tracing mo-
dels the path of each light ray through the scene, providing high realism.

Ray tracing allows you to model the interaction of light with the surfaces of objects,
taking into account reflection and refraction. This allows for realistic effects such as
reflections and refraction.

The basic ray tracing equation:
equation:

𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) = 𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,

where 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡)is a point on the beam, 𝑂𝑂𝑂𝑂is the starting point (camera), D is the

direction of the beam, t – parameter that determines the distance from the starting

point.

For each pixel on the screen, the path of the ray passing through the scene is

calculated, and its interaction with objects is determined, taking into account

reflection and refraction. This allows you to create realistic effects such as

transparent materials, mirror surfaces and soft shadows.

Hybrid rendering methods combine ray tracing with traditional rasterization

methods, allowing you to maintain performance when rendering complex scenes.

For example, rasterization can be used to display major objects in a scene, while ray

tracing is only used to calculate the effects of global lighting, reflections, or

refraction in narrow areas of the scene. This allows you to avoid fully modeling

complex light interactions for each pixel and only calculate them when you really

need to.

Another modern approach to rendering is voxel – based methods rendering

and using deep learning rendering like DLSS (Deep Learning Great Sampling).

Voxels, or volumetric pixels, represent 3D space in the form of a regular grid, which

simplifies the calculation of lighting and collisions between objects. Voxel rendering

can be used to simulate volumetric effects such as fog or smoke. At the same time,

machine learning-based technologies such as DLSS enable higher rendering

resolution by reproducing high-detail images based on lower-resolution input

frames. The formula for estimating the resolution increase in DLSS is as follows:

𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙,𝜃𝜃𝜃𝜃),

where 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the original high-resolution image,𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙 – input image with low

resolution, 𝜃𝜃𝜃𝜃 – parameters of the trained model.

,
where

equation:

𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) = 𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,

where 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡)is a point on the beam, 𝑂𝑂𝑂𝑂is the starting point (camera), D is the

direction of the beam, t – parameter that determines the distance from the starting

point.

For each pixel on the screen, the path of the ray passing through the scene is

calculated, and its interaction with objects is determined, taking into account

reflection and refraction. This allows you to create realistic effects such as

transparent materials, mirror surfaces and soft shadows.

Hybrid rendering methods combine ray tracing with traditional rasterization

methods, allowing you to maintain performance when rendering complex scenes.

For example, rasterization can be used to display major objects in a scene, while ray

tracing is only used to calculate the effects of global lighting, reflections, or

refraction in narrow areas of the scene. This allows you to avoid fully modeling

complex light interactions for each pixel and only calculate them when you really

need to.

Another modern approach to rendering is voxel – based methods rendering

and using deep learning rendering like DLSS (Deep Learning Great Sampling).

Voxels, or volumetric pixels, represent 3D space in the form of a regular grid, which

simplifies the calculation of lighting and collisions between objects. Voxel rendering

can be used to simulate volumetric effects such as fog or smoke. At the same time,

machine learning-based technologies such as DLSS enable higher rendering

resolution by reproducing high-detail images based on lower-resolution input

frames. The formula for estimating the resolution increase in DLSS is as follows:

𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙,𝜃𝜃𝜃𝜃),

where 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the original high-resolution image,𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙 – input image with low

resolution, 𝜃𝜃𝜃𝜃 – parameters of the trained model.

is a point on the beam,
equation:

𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) = 𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,

where 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡)is a point on the beam, 𝑂𝑂𝑂𝑂is the starting point (camera), D is the

direction of the beam, t – parameter that determines the distance from the starting

point.

For each pixel on the screen, the path of the ray passing through the scene is

calculated, and its interaction with objects is determined, taking into account

reflection and refraction. This allows you to create realistic effects such as

transparent materials, mirror surfaces and soft shadows.

Hybrid rendering methods combine ray tracing with traditional rasterization

methods, allowing you to maintain performance when rendering complex scenes.

For example, rasterization can be used to display major objects in a scene, while ray

tracing is only used to calculate the effects of global lighting, reflections, or

refraction in narrow areas of the scene. This allows you to avoid fully modeling

complex light interactions for each pixel and only calculate them when you really

need to.

Another modern approach to rendering is voxel – based methods rendering

and using deep learning rendering like DLSS (Deep Learning Great Sampling).

Voxels, or volumetric pixels, represent 3D space in the form of a regular grid, which

simplifies the calculation of lighting and collisions between objects. Voxel rendering

can be used to simulate volumetric effects such as fog or smoke. At the same time,

machine learning-based technologies such as DLSS enable higher rendering

resolution by reproducing high-detail images based on lower-resolution input

frames. The formula for estimating the resolution increase in DLSS is as follows:

𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙,𝜃𝜃𝜃𝜃),

where 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the original high-resolution image,𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙 – input image with low

resolution, 𝜃𝜃𝜃𝜃 – parameters of the trained model.

 is the starting point (camera), D is the direction of
the beam, t – parameter that determines the distance from the starting point.

For each pixel on the screen, the path of the ray passing through the scene is cal-
culated, and its interaction with objects is determined, taking into account reflection
and refraction. This allows you to create realistic effects such as transparent materials,
mirror surfaces and soft shadows.

Hybrid rendering methods combine ray tracing with traditional rasterization meth-
ods, allowing you to maintain performance when rendering complex scenes. For exam-
ple, rasterization can be used to display major objects in a scene, while ray tracing is
only used to calculate the effects of global lighting, reflections, or refraction in narrow
areas of the scene. This allows you to avoid fully modeling complex light interactions
for each pixel and only calculate them when you really need to.

Another modern approach to rendering is voxel – based methods rendering and
using deep learning rendering like DLSS (Deep Learning Great Sampling). Voxels, or
volumetric pixels, represent 3D space in the form of a regular grid, which simplifies
the calculation of lighting and collisions between objects. Voxel rendering can be used
to simulate volumetric effects such as fog or smoke. At the same time, machine lear-
ning-based technologies such as DLSS enable higher rendering resolution by reprodu-
cing high-detail images based on lower-resolution input frames. The formula for esti-
mating the resolution increase in DLSS is as follows:

31
Комп’ютерні науки та інформаційні технології

equation:

𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) = 𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,

where 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡)is a point on the beam, 𝑂𝑂𝑂𝑂is the starting point (camera), D is the

direction of the beam, t – parameter that determines the distance from the starting

point.

For each pixel on the screen, the path of the ray passing through the scene is

calculated, and its interaction with objects is determined, taking into account

reflection and refraction. This allows you to create realistic effects such as

transparent materials, mirror surfaces and soft shadows.

Hybrid rendering methods combine ray tracing with traditional rasterization

methods, allowing you to maintain performance when rendering complex scenes.

For example, rasterization can be used to display major objects in a scene, while ray

tracing is only used to calculate the effects of global lighting, reflections, or

refraction in narrow areas of the scene. This allows you to avoid fully modeling

complex light interactions for each pixel and only calculate them when you really

need to.

Another modern approach to rendering is voxel – based methods rendering

and using deep learning rendering like DLSS (Deep Learning Great Sampling).

Voxels, or volumetric pixels, represent 3D space in the form of a regular grid, which

simplifies the calculation of lighting and collisions between objects. Voxel rendering

can be used to simulate volumetric effects such as fog or smoke. At the same time,

machine learning-based technologies such as DLSS enable higher rendering

resolution by reproducing high-detail images based on lower-resolution input

frames. The formula for estimating the resolution increase in DLSS is as follows:

𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙,𝜃𝜃𝜃𝜃),

where 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the original high-resolution image,𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙 – input image with low

resolution, 𝜃𝜃𝜃𝜃 – parameters of the trained model.

where

equation:

𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) = 𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,

where 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡)is a point on the beam, 𝑂𝑂𝑂𝑂is the starting point (camera), D is the

direction of the beam, t – parameter that determines the distance from the starting

point.

For each pixel on the screen, the path of the ray passing through the scene is

calculated, and its interaction with objects is determined, taking into account

reflection and refraction. This allows you to create realistic effects such as

transparent materials, mirror surfaces and soft shadows.

Hybrid rendering methods combine ray tracing with traditional rasterization

methods, allowing you to maintain performance when rendering complex scenes.

For example, rasterization can be used to display major objects in a scene, while ray

tracing is only used to calculate the effects of global lighting, reflections, or

refraction in narrow areas of the scene. This allows you to avoid fully modeling

complex light interactions for each pixel and only calculate them when you really

need to.

Another modern approach to rendering is voxel – based methods rendering

and using deep learning rendering like DLSS (Deep Learning Great Sampling).

Voxels, or volumetric pixels, represent 3D space in the form of a regular grid, which

simplifies the calculation of lighting and collisions between objects. Voxel rendering

can be used to simulate volumetric effects such as fog or smoke. At the same time,

machine learning-based technologies such as DLSS enable higher rendering

resolution by reproducing high-detail images based on lower-resolution input

frames. The formula for estimating the resolution increase in DLSS is as follows:

𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙,𝜃𝜃𝜃𝜃),

where 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the original high-resolution image,𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙 – input image with low

resolution, 𝜃𝜃𝜃𝜃 – parameters of the trained model.

is the original high-resolution image,

equation:

𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) = 𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,

where 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡)is a point on the beam, 𝑂𝑂𝑂𝑂is the starting point (camera), D is the

direction of the beam, t – parameter that determines the distance from the starting

point.

For each pixel on the screen, the path of the ray passing through the scene is

calculated, and its interaction with objects is determined, taking into account

reflection and refraction. This allows you to create realistic effects such as

transparent materials, mirror surfaces and soft shadows.

Hybrid rendering methods combine ray tracing with traditional rasterization

methods, allowing you to maintain performance when rendering complex scenes.

For example, rasterization can be used to display major objects in a scene, while ray

tracing is only used to calculate the effects of global lighting, reflections, or

refraction in narrow areas of the scene. This allows you to avoid fully modeling

complex light interactions for each pixel and only calculate them when you really

need to.

Another modern approach to rendering is voxel – based methods rendering

and using deep learning rendering like DLSS (Deep Learning Great Sampling).

Voxels, or volumetric pixels, represent 3D space in the form of a regular grid, which

simplifies the calculation of lighting and collisions between objects. Voxel rendering

can be used to simulate volumetric effects such as fog or smoke. At the same time,

machine learning-based technologies such as DLSS enable higher rendering

resolution by reproducing high-detail images based on lower-resolution input

frames. The formula for estimating the resolution increase in DLSS is as follows:

𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙,𝜃𝜃𝜃𝜃),

where 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the original high-resolution image,𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙 – input image with low

resolution, 𝜃𝜃𝜃𝜃 – parameters of the trained model.

– input image with low resolu-
tion,

equation:

𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) = 𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,

where 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡)is a point on the beam, 𝑂𝑂𝑂𝑂is the starting point (camera), D is the

direction of the beam, t – parameter that determines the distance from the starting

point.

For each pixel on the screen, the path of the ray passing through the scene is

calculated, and its interaction with objects is determined, taking into account

reflection and refraction. This allows you to create realistic effects such as

transparent materials, mirror surfaces and soft shadows.

Hybrid rendering methods combine ray tracing with traditional rasterization

methods, allowing you to maintain performance when rendering complex scenes.

For example, rasterization can be used to display major objects in a scene, while ray

tracing is only used to calculate the effects of global lighting, reflections, or

refraction in narrow areas of the scene. This allows you to avoid fully modeling

complex light interactions for each pixel and only calculate them when you really

need to.

Another modern approach to rendering is voxel – based methods rendering

and using deep learning rendering like DLSS (Deep Learning Great Sampling).

Voxels, or volumetric pixels, represent 3D space in the form of a regular grid, which

simplifies the calculation of lighting and collisions between objects. Voxel rendering

can be used to simulate volumetric effects such as fog or smoke. At the same time,

machine learning-based technologies such as DLSS enable higher rendering

resolution by reproducing high-detail images based on lower-resolution input

frames. The formula for estimating the resolution increase in DLSS is as follows:

𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙,𝜃𝜃𝜃𝜃),

where 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the original high-resolution image,𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙 – input image with low

resolution, 𝜃𝜃𝜃𝜃 – parameters of the trained model.

 – parameters of the trained model.
This allows you to reduce the load on the GPU while maintaining a high frame rate

and image quality.
The improvement of rendering technologies is directly related to the optimization

of polygons, textures and lighting, as new methods allow more efficient use of com-
puting resources. For example, thanks to ray tracing and hybrid methods, less detailed
polygon meshes and optimized textures can be used, focusing calculations on lighting
and reflection. Using machine learning to improve image quality allows you to achieve
high resolution without significant memory and power costs. Thus, the latest rendering
technologies provide maximum image quality with minimum resource consumption,
which is critical for applications with high performance requirements, such as video
games and virtual reality.

The use of machine learning (ML) to optimize 3D graphics is becoming more and
more common, as it allows automating complex processes and reducing the load on
hardware resources. In particular, neural networks help in the processes of image reso-
lution enhancement, texture compression, lighting optimization, and automatic creation
of LODs (levels of detail). This allows for high performance and realism without sig-
nificantly increasing the number of polygons or memory needed to store textures. For
example, NVIDIA's Deep Learning Super Sampling (DLSS) technology uses neural
networks to reconstruct high-resolution images from low-resolution input frames.

The basic equation for neural network training used in DLSS can be represented as
the minimization of the loss function:

𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃) = 1
𝑁𝑁𝑁𝑁
∑ 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃))2,

where 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃)is the cost function, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖are the real values, 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃)are the

predictions of the neural network, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 are the input data, 𝜃𝜃𝜃𝜃and are the parameters of

the model.

With this approach, the model learns to transform low-resolution images into

more detailed versions, allowing it to maintain a high frame rate even in demanding

scenes.

Machine learning is also heavily used for texture compression, which is

related to the topic of texture and polygon optimization. For example, the use of

autoencoders allows you to reduce the size of textures without losing a significant

amount of visual information. An autoencoder consists of two parts: an encoder that

compresses the input texture to a reduced representation, and a decoder that

reconstructs the texture.

Neural networks can be used to predict complex lighting effects or generate

high-quality textures from low-resolution samples.

Modern cloud technologies allow performing complex calculations for

rendering and optimization on remote servers. This greatly expands the possibilities

for developers, providing access to powerful resources without the need to purchase

expensive hardware.

Task distribution formula:

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁

+ 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒,

where 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total execution time, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the execution time of one task,

N is the number of servers, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 is the overhead of task distribution.

where 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃) = 1
𝑁𝑁𝑁𝑁
∑ 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃))2,

where 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃)is the cost function, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖are the real values, 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃)are the

predictions of the neural network, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 are the input data, 𝜃𝜃𝜃𝜃and are the parameters of

the model.

With this approach, the model learns to transform low-resolution images into

more detailed versions, allowing it to maintain a high frame rate even in demanding

scenes.

Machine learning is also heavily used for texture compression, which is

related to the topic of texture and polygon optimization. For example, the use of

autoencoders allows you to reduce the size of textures without losing a significant

amount of visual information. An autoencoder consists of two parts: an encoder that

compresses the input texture to a reduced representation, and a decoder that

reconstructs the texture.

Neural networks can be used to predict complex lighting effects or generate

high-quality textures from low-resolution samples.

Modern cloud technologies allow performing complex calculations for

rendering and optimization on remote servers. This greatly expands the possibilities

for developers, providing access to powerful resources without the need to purchase

expensive hardware.

Task distribution formula:

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁

+ 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒,

where 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total execution time, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the execution time of one task,

N is the number of servers, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 is the overhead of task distribution.

is the cost function, 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃) = 1
𝑁𝑁𝑁𝑁
∑ 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃))2,

where 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃)is the cost function, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖are the real values, 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃)are the

predictions of the neural network, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 are the input data, 𝜃𝜃𝜃𝜃and are the parameters of

the model.

With this approach, the model learns to transform low-resolution images into

more detailed versions, allowing it to maintain a high frame rate even in demanding

scenes.

Machine learning is also heavily used for texture compression, which is

related to the topic of texture and polygon optimization. For example, the use of

autoencoders allows you to reduce the size of textures without losing a significant

amount of visual information. An autoencoder consists of two parts: an encoder that

compresses the input texture to a reduced representation, and a decoder that

reconstructs the texture.

Neural networks can be used to predict complex lighting effects or generate

high-quality textures from low-resolution samples.

Modern cloud technologies allow performing complex calculations for

rendering and optimization on remote servers. This greatly expands the possibilities

for developers, providing access to powerful resources without the need to purchase

expensive hardware.

Task distribution formula:

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁

+ 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒,

where 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total execution time, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the execution time of one task,

N is the number of servers, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 is the overhead of task distribution.

 are the real values, 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃) = 1
𝑁𝑁𝑁𝑁
∑ 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃))2,

where 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃)is the cost function, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖are the real values, 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃)are the

predictions of the neural network, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 are the input data, 𝜃𝜃𝜃𝜃and are the parameters of

the model.

With this approach, the model learns to transform low-resolution images into

more detailed versions, allowing it to maintain a high frame rate even in demanding

scenes.

Machine learning is also heavily used for texture compression, which is

related to the topic of texture and polygon optimization. For example, the use of

autoencoders allows you to reduce the size of textures without losing a significant

amount of visual information. An autoencoder consists of two parts: an encoder that

compresses the input texture to a reduced representation, and a decoder that

reconstructs the texture.

Neural networks can be used to predict complex lighting effects or generate

high-quality textures from low-resolution samples.

Modern cloud technologies allow performing complex calculations for

rendering and optimization on remote servers. This greatly expands the possibilities

for developers, providing access to powerful resources without the need to purchase

expensive hardware.

Task distribution formula:

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁

+ 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒,

where 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total execution time, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the execution time of one task,

N is the number of servers, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 is the overhead of task distribution.

 are the predictions of the
neural network, 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃) = 1
𝑁𝑁𝑁𝑁
∑ 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃))2,

where 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃)is the cost function, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖are the real values, 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃)are the

predictions of the neural network, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 are the input data, 𝜃𝜃𝜃𝜃and are the parameters of

the model.

With this approach, the model learns to transform low-resolution images into

more detailed versions, allowing it to maintain a high frame rate even in demanding

scenes.

Machine learning is also heavily used for texture compression, which is

related to the topic of texture and polygon optimization. For example, the use of

autoencoders allows you to reduce the size of textures without losing a significant

amount of visual information. An autoencoder consists of two parts: an encoder that

compresses the input texture to a reduced representation, and a decoder that

reconstructs the texture.

Neural networks can be used to predict complex lighting effects or generate

high-quality textures from low-resolution samples.

Modern cloud technologies allow performing complex calculations for

rendering and optimization on remote servers. This greatly expands the possibilities

for developers, providing access to powerful resources without the need to purchase

expensive hardware.

Task distribution formula:

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁

+ 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒,

where 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total execution time, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the execution time of one task,

N is the number of servers, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 is the overhead of task distribution.

 are the input data,

equation:

𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) = 𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,

where 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡)is a point on the beam, 𝑂𝑂𝑂𝑂is the starting point (camera), D is the

direction of the beam, t – parameter that determines the distance from the starting

point.

For each pixel on the screen, the path of the ray passing through the scene is

calculated, and its interaction with objects is determined, taking into account

reflection and refraction. This allows you to create realistic effects such as

transparent materials, mirror surfaces and soft shadows.

Hybrid rendering methods combine ray tracing with traditional rasterization

methods, allowing you to maintain performance when rendering complex scenes.

For example, rasterization can be used to display major objects in a scene, while ray

tracing is only used to calculate the effects of global lighting, reflections, or

refraction in narrow areas of the scene. This allows you to avoid fully modeling

complex light interactions for each pixel and only calculate them when you really

need to.

Another modern approach to rendering is voxel – based methods rendering

and using deep learning rendering like DLSS (Deep Learning Great Sampling).

Voxels, or volumetric pixels, represent 3D space in the form of a regular grid, which

simplifies the calculation of lighting and collisions between objects. Voxel rendering

can be used to simulate volumetric effects such as fog or smoke. At the same time,

machine learning-based technologies such as DLSS enable higher rendering

resolution by reproducing high-detail images based on lower-resolution input

frames. The formula for estimating the resolution increase in DLSS is as follows:

𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙,𝜃𝜃𝜃𝜃),

where 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the original high-resolution image,𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙 – input image with low

resolution, 𝜃𝜃𝜃𝜃 – parameters of the trained model.

 and are the parameters of the model.
With this approach, the model learns to transform low-resolution images into more

detailed versions, allowing it to maintain a high frame rate even in demanding scenes.
Machine learning is also heavily used for texture compression, which is related to

the topic of texture and polygon optimization. For example, the use of autoencoders
allows you to reduce the size of textures without losing a significant amount of visual
information. An autoencoder consists of two parts: an encoder that compresses the input
texture to a reduced representation, and a decoder that reconstructs the texture.

Neural networks can be used to predict complex lighting effects or generate
high-quality textures from low-resolution samples.

Modern cloud technologies allow performing complex calculations for rendering
and optimization on remote servers. This greatly expands the possibilities for develo-
pers, providing access to powerful resources without the need to purchase expensive
hardware.

Task distribution formula:

𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃) = 1
𝑁𝑁𝑁𝑁
∑ 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃))2,

where 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃)is the cost function, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖are the real values, 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃)are the

predictions of the neural network, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 are the input data, 𝜃𝜃𝜃𝜃and are the parameters of

the model.

With this approach, the model learns to transform low-resolution images into

more detailed versions, allowing it to maintain a high frame rate even in demanding

scenes.

Machine learning is also heavily used for texture compression, which is

related to the topic of texture and polygon optimization. For example, the use of

autoencoders allows you to reduce the size of textures without losing a significant

amount of visual information. An autoencoder consists of two parts: an encoder that

compresses the input texture to a reduced representation, and a decoder that

reconstructs the texture.

Neural networks can be used to predict complex lighting effects or generate

high-quality textures from low-resolution samples.

Modern cloud technologies allow performing complex calculations for

rendering and optimization on remote servers. This greatly expands the possibilities

for developers, providing access to powerful resources without the need to purchase

expensive hardware.

Task distribution formula:

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁

+ 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒,

where 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total execution time, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the execution time of one task,

N is the number of servers, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 is the overhead of task distribution.

where

𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃) = 1
𝑁𝑁𝑁𝑁
∑ 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃))2,

where 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃)is the cost function, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖are the real values, 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃)are the

predictions of the neural network, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 are the input data, 𝜃𝜃𝜃𝜃and are the parameters of

the model.

With this approach, the model learns to transform low-resolution images into

more detailed versions, allowing it to maintain a high frame rate even in demanding

scenes.

Machine learning is also heavily used for texture compression, which is

related to the topic of texture and polygon optimization. For example, the use of

autoencoders allows you to reduce the size of textures without losing a significant

amount of visual information. An autoencoder consists of two parts: an encoder that

compresses the input texture to a reduced representation, and a decoder that

reconstructs the texture.

Neural networks can be used to predict complex lighting effects or generate

high-quality textures from low-resolution samples.

Modern cloud technologies allow performing complex calculations for

rendering and optimization on remote servers. This greatly expands the possibilities

for developers, providing access to powerful resources without the need to purchase

expensive hardware.

Task distribution formula:

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁

+ 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒,

where 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total execution time, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the execution time of one task,

N is the number of servers, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 is the overhead of task distribution.

is the total execution time,

𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃) = 1
𝑁𝑁𝑁𝑁
∑ 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃))2,

where 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃)is the cost function, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖are the real values, 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃)are the

predictions of the neural network, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 are the input data, 𝜃𝜃𝜃𝜃and are the parameters of

the model.

With this approach, the model learns to transform low-resolution images into

more detailed versions, allowing it to maintain a high frame rate even in demanding

scenes.

Machine learning is also heavily used for texture compression, which is

related to the topic of texture and polygon optimization. For example, the use of

autoencoders allows you to reduce the size of textures without losing a significant

amount of visual information. An autoencoder consists of two parts: an encoder that

compresses the input texture to a reduced representation, and a decoder that

reconstructs the texture.

Neural networks can be used to predict complex lighting effects or generate

high-quality textures from low-resolution samples.

Modern cloud technologies allow performing complex calculations for

rendering and optimization on remote servers. This greatly expands the possibilities

for developers, providing access to powerful resources without the need to purchase

expensive hardware.

Task distribution formula:

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁

+ 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒,

where 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total execution time, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the execution time of one task,

N is the number of servers, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 is the overhead of task distribution.

 is the execution time of one task, N is the
number of servers,

𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃) = 1
𝑁𝑁𝑁𝑁
∑ 𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃))2,

where 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃)is the cost function, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖are the real values, 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 ,𝜃𝜃𝜃𝜃)are the

predictions of the neural network, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 are the input data, 𝜃𝜃𝜃𝜃and are the parameters of

the model.

With this approach, the model learns to transform low-resolution images into

more detailed versions, allowing it to maintain a high frame rate even in demanding

scenes.

Machine learning is also heavily used for texture compression, which is

related to the topic of texture and polygon optimization. For example, the use of

autoencoders allows you to reduce the size of textures without losing a significant

amount of visual information. An autoencoder consists of two parts: an encoder that

compresses the input texture to a reduced representation, and a decoder that

reconstructs the texture.

Neural networks can be used to predict complex lighting effects or generate

high-quality textures from low-resolution samples.

Modern cloud technologies allow performing complex calculations for

rendering and optimization on remote servers. This greatly expands the possibilities

for developers, providing access to powerful resources without the need to purchase

expensive hardware.

Task distribution formula:

𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁

+ 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒,

where 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total execution time, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the execution time of one task,

N is the number of servers, 𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒 is the overhead of task distribution.

is the overhead of task distribution.
Distributed computing allows you to significantly reduce the rendering time of com-

plex scenes.

32
Таврійський науковий вісник № 5

Mathematical modeling of polygons is the basis for creating three-dimensional
objects in 3D graphics. Polygonal meshes consist of a large number of triangles that are
combined to form the surfaces of objects. Each triangle is described by the coordinates
of its vertices in three-dimensional space, which allows forming complex geometric
figures. The mathematical models describing these grids use mathematics to represent
space, calculating the normals, areas, and volumes of objects that are necessary for the
correct interaction of light with the surface. An important part of this process is under-
standing how calculations affect system performance, as complex models can signifi-
cantly slow down rendering.

The optimization of polygon meshes is directly related to the number of polygons
that make up the object. The more polygons a model has, the more detailed it looks, but
the more computing resources are needed to display it. Therefore, to reduce the load
on the graphics processor and reduce the rendering time, developers use optimization
techniques, such as reducing the level of detail (Level of Detail, LOD). These methods
allow you to automatically change the number of polygons depending on the distance
of the object to the camera, leaving a highly detailed model only when it is close to the
viewer. Mathematical modeling in this case includes the calculation of curves and sim-
plified geometries that maintain visual integrity with a minimum number of polygons.

Besides LOD, another method is to optimize meshes using simplification algorithms
such as Quadric Error Metrics (QEM). QEM allows you to calculate the error that
occurs when removing or replacing a triangle vertex with another, and based on this,
remove insignificant polygons that do not affect the overall appearance of the object.
The formula for calculating the quadratic error allows you to reduce the number of
polygons, while maintaining the maximum approximation to the original shape. This
approach is particularly useful for objects with a large amount of detail, such as video
game characters or architectural elements, where it is important to preserve the aesthetic
appeal of the object.

Mathematical modeling of polygons is directly related to the importance of optimi-
zation in 3D graphics, since the effective use of resources depends on the correct cal-
culation and application of geometric models. Optimized models allow for high image
quality without significant performance loss, which is especially important for applica-
tions with high real-time requirements, such as video games and VR/AR applications.
The use of mathematical modeling methods in combination with optimization tech-
niques provides a balance between detail and speed, creating the most comfortable and
realistic experience for users, while reducing the load on the hardware.

The optimization of polygon meshes is directly related to the number of polygons
that make up the object. The more polygons a model has, the more detailed it looks, but
the more computing resources are required to display it. Therefore, to reduce the load on
the graphics processor and reduce the rendering time, developers use optimization tech-
niques, such as reducing the level of detail (Level of Detail, LOD). These methods allow
you to automatically change the number of polygons depending on the distance of the
object to the camera, leaving a highly detailed model only when it is close to the viewer.

An important aspect of such algorithms is the calculation of the visible area of the
object:

𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∙ cos (𝜃𝜃𝜃𝜃),

where 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the area of the object, 𝜃𝜃𝜃𝜃is the angle between the normal to the

surface of the object and the direction to the camera.

Besides LOD, another method is to optimize meshes using simplification

algorithms such as Quadric Error Metrics (QEM). QEM allows you to calculate the

error that occurs when removing or replacing a triangle vertex with another, and

based on this, remove insignificant polygons that do not affect the overall

appearance of the object. The quadratic error formula for the vertex v has the form:

The formula for the quadratic error for a vertex is as follows:

𝑄𝑄𝑄𝑄(𝑣𝑣𝑣𝑣) = 𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,

where 𝑄𝑄𝑄𝑄(𝑣𝑣𝑣𝑣)is the error matrix describing the surfac

where 𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∙ cos (𝜃𝜃𝜃𝜃),

where 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the area of the object, 𝜃𝜃𝜃𝜃is the angle between the normal to the

surface of the object and the direction to the camera.

Besides LOD, another method is to optimize meshes using simplification

algorithms such as Quadric Error Metrics (QEM). QEM allows you to calculate the

error that occurs when removing or replacing a triangle vertex with another, and

based on this, remove insignificant polygons that do not affect the overall

appearance of the object. The quadratic error formula for the vertex v has the form:

The formula for the quadratic error for a vertex is as follows:

𝑄𝑄𝑄𝑄(𝑣𝑣𝑣𝑣) = 𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,

where 𝑄𝑄𝑄𝑄(𝑣𝑣𝑣𝑣)is the error matrix describing the surfac

is the area of the object,

equation:

𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡) = 𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,

where 𝑃𝑃𝑃𝑃(𝑡𝑡𝑡𝑡)is a point on the beam, 𝑂𝑂𝑂𝑂is the starting point (camera), D is the

direction of the beam, t – parameter that determines the distance from the starting

point.

For each pixel on the screen, the path of the ray passing through the scene is

calculated, and its interaction with objects is determined, taking into account

reflection and refraction. This allows you to create realistic effects such as

transparent materials, mirror surfaces and soft shadows.

Hybrid rendering methods combine ray tracing with traditional rasterization

methods, allowing you to maintain performance when rendering complex scenes.

For example, rasterization can be used to display major objects in a scene, while ray

tracing is only used to calculate the effects of global lighting, reflections, or

refraction in narrow areas of the scene. This allows you to avoid fully modeling

complex light interactions for each pixel and only calculate them when you really

need to.

Another modern approach to rendering is voxel – based methods rendering

and using deep learning rendering like DLSS (Deep Learning Great Sampling).

Voxels, or volumetric pixels, represent 3D space in the form of a regular grid, which

simplifies the calculation of lighting and collisions between objects. Voxel rendering

can be used to simulate volumetric effects such as fog or smoke. At the same time,

machine learning-based technologies such as DLSS enable higher rendering

resolution by reproducing high-detail images based on lower-resolution input

frames. The formula for estimating the resolution increase in DLSS is as follows:

𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑓𝑓(𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙,𝜃𝜃𝜃𝜃),

where 𝑆𝑆𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the original high-resolution image,𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙 – input image with low

resolution, 𝜃𝜃𝜃𝜃 – parameters of the trained model.

 is the angle between the normal to the surface
of the object and the direction to the camera.

Besides LOD, another method is to optimize meshes using simplification algorithms
such as Quadric Error Metrics (QEM). QEM allows you to calculate the error that

33
Комп’ютерні науки та інформаційні технології

occurs when removing or replacing a triangle vertex with another, and based on this,
remove insignificant polygons that do not affect the overall appearance of the object.
The quadratic error formula for the vertex v has the form:

The formula for the quadratic error for a vertex is as follows:

𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∙ cos (𝜃𝜃𝜃𝜃),

where 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the area of the object, 𝜃𝜃𝜃𝜃is the angle between the normal to the

surface of the object and the direction to the camera.

Besides LOD, another method is to optimize meshes using simplification

algorithms such as Quadric Error Metrics (QEM). QEM allows you to calculate the

error that occurs when removing or replacing a triangle vertex with another, and

based on this, remove insignificant polygons that do not affect the overall

appearance of the object. The quadratic error formula for the vertex v has the form:

The formula for the quadratic error for a vertex is as follows:

𝑄𝑄𝑄𝑄(𝑣𝑣𝑣𝑣) = 𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,

where 𝑄𝑄𝑄𝑄(𝑣𝑣𝑣𝑣)is the error matrix describing the surfac where

𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∙ cos (𝜃𝜃𝜃𝜃),

where 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the area of the object, 𝜃𝜃𝜃𝜃is the angle between the normal to the

surface of the object and the direction to the camera.

Besides LOD, another method is to optimize meshes using simplification

algorithms such as Quadric Error Metrics (QEM). QEM allows you to calculate the

error that occurs when removing or replacing a triangle vertex with another, and

based on this, remove insignificant polygons that do not affect the overall

appearance of the object. The quadratic error formula for the vertex v has the form:

The formula for the quadratic error for a vertex is as follows:

𝑄𝑄𝑄𝑄(𝑣𝑣𝑣𝑣) = 𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,

where 𝑄𝑄𝑄𝑄(𝑣𝑣𝑣𝑣)is the error matrix describing the surfac

is the error matrix describing the surface distortion when simplified, and are

𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∙ cos (𝜃𝜃𝜃𝜃),

where 𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the area of the object, 𝜃𝜃𝜃𝜃is the angle between the normal to the

surface of the object and the direction to the camera.

Besides LOD, another method is to optimize meshes using simplification

algorithms such as Quadric Error Metrics (QEM). QEM allows you to calculate the

error that occurs when removing or replacing a triangle vertex with another, and

based on this, remove insignificant polygons that do not affect the overall

appearance of the object. The quadratic error formula for the vertex v has the form:

The formula for the quadratic error for a vertex is as follows:

𝑄𝑄𝑄𝑄(𝑣𝑣𝑣𝑣) = 𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇𝑄𝑄𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,

where 𝑄𝑄𝑄𝑄(𝑣𝑣𝑣𝑣)is the error matrix describing the surfac the coordinates of the vertex.
By calculating this error for each vertex, it is possible to determine which vertices

can be removed or moved with minimal loss of geometric accuracy.
Mathematical modeling of polygons is directly related to the importance of opti-

mization in 3D graphics, since the effective use of resources depends on the correct
calculation and application of geometric models. Optimized models allow for high
image quality without significant performance loss, which is especially important for
applications with high real-time requirements, such as video games and VR/AR appli-
cations. The use of mathematical modeling methods, such as the calculation of the area
of triangles and the use of error metrics, in combination with optimization techniques
provides a balance between detail and speed, creating the most comfortable and realistic
experience for users, while reducing the load on the hardware.

Distributed computing and cloud technologies play an important role in modern 3D
graphics, as they allow complex calculations to be performed for rendering and proces-
sing of large volumes of data on remote servers, reducing local hardware requirements.
This is especially true for resource-intensive tasks, such as rendering photorealistic
scenes with ray tracing, simulating global lighting, and processing high-resolution tex-
tures. Distributed systems allow you to divide such tasks into several nodes that perform
their parts of work in parallel, significantly speeding up the rendering process. This enab-
les high performance and scalability, which is important for large animation studios,
game companies and architectural renderings.

Cloud technologies such as Amazon Web Services (AWS), Google Cloud Platform
(GCP) and Microsoft Azure, allow you to use powerful GPUs for distributed rendering
in a remote environment. This allows small teams or individual developers to have
access to powerful computing resources without investing in expensive hardware. For
example, you can run physically correct rendering simulations or perform ray tracing on
GPU – enabled virtual machines.

The high computational demands of ray tracing and machine learning methods can
be reduced by distributed computing, which allows processing large amounts of data
in parallel. For example, creating LODs (levels of detail) for a large number of models
or generating highly detailed textures can be performed on several servers at the same
time, which significantly speeds up the process. Cloud technologies also allow textures
to be stored in high resolution and synchronized with local machines, ensuring optimal
access to resources when rendering complex scenes. This allows developers to achieve
high rendering quality by efficiently using available resources.

Conclusions. Thus, image optimization in 3D graphics is an important aspect of the mo-
dern digital industry. The use of advanced methods, such as texture compression, dynamic
change of detail levels, hybrid rendering methods and machine learning, allows you to
achieve high quality images with reduced hardware load. Further improvements in these
technologies will help create even more realistic and immersive visual worlds for users.

The scientific result of the research is an improved technology for image optimiza-
tion of 3D graphics.

34
Таврійський науковий вісник № 5

The practical result of the work is recommendations regarding the optimization of
3D graphics images.

A further direction of research can be the assessment of the effectiveness of using
software tools for optimizing images of 3D graphics.

BIBLIOGRAPHY:
1. Gu C., Lu X., Zhang C. Example-based color transfer with Gaussian

mixture modeling. Pattern Recognition . Vol. 129. R r . 771-774, 2022. DOI:
https://doi.org/10.1016/j.patcog.2022.108716

2. Starkova O., Bondarenko D., Hrabovskyi Y. Providing software support for
economic analysis. Technology Audit and Production Reserves, 2023, No. 5 (2 (73)),
pp. 34–39.

3. Hrabovskyi Y., Bondarenko D., Ushakova I. Usage of adaptive design technologies
for the design of a web application for analysis of the efficiency of solar panels. Academic
notes of TNU named after V.I. Vernadskyi. Series: Technical Sciences, 2024, Vol. 35 (74),
No. 1, pp. 118-126.

4. Joern B., Peter C. Foresight and Design: New Support for Strategic Decision
Making, She Ji. The Journal of Design, Economics, and Innovation . No. 6(3).
pp. 408-432, 2020. DOI: https://doi.org/10.1016/j.sheji.2020.07.002

5. Martin R. Twenty challenges for innovation studies . Science and Public Policy,
2016, No. 43(3), pp. 432–450.

6. Hrabovskyi Y., Bondarenko D., Kobzev I. Improving the technology for constructing
a software tool to determine the similarity of raster graphic images. Eastern-European
Journal of Enterprise Technologies . 2024. No. 1(2 (127). pp. 16–25. DOI : https://doi.org/
10.15587/1729-4061.2024.298744

7. Khoroshevska I., Khoroshevskyi O., Hrabovskyi Y., Lukyanova V.,
Zhytlova I. Development of a multimedia training course for user self– development.
Eastern-European Journal of Enterprise Technologies . 2024. No. 2(2 (128). pp . 48–63.

8. Hood N. Quality in MOOCs: Surveying the terrain. Burnaby: Commonwealth of
Learning, 2016, 40 p.

9. Hrabovskyi Y., Kots H., Szymczyk K. Justification of the innovative strategy
of information technology implementation for the implementation of multimedia
publishing business projects. Proceedings on Engineering Sciences , 2022. No. 4(4).
pp. 467–480. DOI: https://doi.org/ 10.24874/PES04.04.008

10. Ushakova I., Hrabovskyi Ye. Methodology for developing an information
site with Workflow support for publishing articles. Development management. 2022.
No. 20(3). Pr. 20–28. DOI: 10.57111/devt.20(3).2022.20-28

11. Ushakova I., Hrabovskyi Y., Bondarenko D. Modeling and selection of a distance
learning system for a higher education institution based on the method of hierarchy
analysis using the DSS. Academic notes of TNU named after V.I. Vernadskyi. Series:
Technical sciences . 2023. Vol. 34(73). No. 2. P. 246-253.

REFERENCES:
1. Gu, C., Lu, X., Zhang, C. (2022) Example-based color transfer with Gaussian

mixture modeling. Pattern Recognition, 129, 771-774. DOI: https://doi.org/10.1016/
j.patcog.2022.108716

2. Starkova, O., Bondarenko, D., Hrabovskyi, Y. (2023) Providing software support
for economic analysis. Technology Audit and Production Reserves, 5 (2 (73)), 34–39.

3. Hrabovskyi, Y., Bondarenko, D., Ushakova, I. (2024) Usage of adaptive design
technologies for the design of a web application for analysis of the efficiency of solar
panels. Vcheni zapiski TNU named after V.I. Vernadskogo. Series: Tekhnichni nauki –
Academic notes of V.I. Vernadsky TNU. Series: Technical sciences, 35 (74), 1, 118–126
[in English].

35
Комп’ютерні науки та інформаційні технології

4. Joern, B., Peter, C. (2020) Foresight and Design: New Support for Strategic
Decision Making, She Ji. The Journal of Design, Economics, and Innovation, 6(3),
408–432 . DOI: https://doi.org/10.1016/j.sheji.2020.07.002

5. Martin, R. (2016) Twenty challenges for innovation studies. Science and Public
Policy, 43(3), 432-450.

6. Hrabovskyi, Y., Bondarenko, D., Kobzev, I. (2024). Improving the technology for
constructing a software tool to determine the similarity of raster graphic images. Eastern-
European Journal of Enterprise Technologies, 1(2 (127), 16–25. DOI: https://doi.org/
10.15587/1729-4061.2024.298744

7. Khoroshevska, I., Khoroshevskyi, O., Hrabovskyi, Y., Lukyanova, V., Zhytlova, I.
(2024) Development of a multimedia training course for user self-development. Eastern-
European Journal of Enterprise Technologies, 2(2 (128), 48–63

8. Hood, N. (2016) Quality in MOOCs: Surveying the terrain. Burnaby:
Commonwealth of Learning, 40.

9. Hrabovskyi, Y., Kots, H., Szymczyk, K. (2022) Justification of the innovative
strategy of information technology implementation for the implementation of multimedia
publishing business projects. Proceedings on Engineering Sciences , 4(4), 467–480.
DOI: https://doi.org/ 10.24874/PES04.04.008

10. Ushakova, I., Hrabovskyi, Ye. (2022) Methodology for developing an information
site with Workflow support for publishing articles. Development management, 20(3),
20–28. DOI: 10.57111/devt.20(3).2022.20-28

11. Ushakova, I., Hrabovskyi, Y., Bondarenko, D. (2023) Modeling and selection
of a distance learning system for a higher education institution based on the method of
hierarchy analysis using the DSS. Vcheni zapiski TNU named after V.I. Vernadskogo.
Series: Tekhnichni nauki – Academic notes of V.I. Vernadsky TNU. Series: Technical
sciences, 34(73), 2, 246–253 [in English].

