Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril

183

UDC 004.415.2
DOI https://doi.org/10.32782/tnv-tech.2025.1.17

OPTIMIZATION OF LOCAL DEVELOPMENT PROCESS
USING DOCKER PHP IMAGE THAT COMES WITH A FULL SET
OF TOOLS OUT OF THE BOX — PERFORMANCE
AND OPTIMIZATION EXTENSIONS

Semeniuk V. V. — Senior Software Engineer, lllumin, National Technical University
of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
ORCID ID: 0009-0007-8670-4023

The optimization of local development processes often hinges on ensuring each element of
the environment is configured for both flexibility and performance. With PHP, one of the most
efficient approaches to achieve such optimization is leveraging Docker images that bundle
essential extensions and tools for caching, debugging, and performance tuning. A comprehensive
Docker image integrating Opcache, Redis, Memcached, BCMath, and xDebug, alongside other
PHP-associated tools, minimizes the overhead of environment reconfiguration and accelerates
developer workflows. By using Docker Compose, developers can further streamline this process
by defining services such as MySQL, Nginx, and RabbitMQ in a single configuration file, ensuring
consistency across team members. This approach eliminates conflicts arising from mismatched
PHP versions or extensions and reduces the time spent on manual environment setup.

Building a PHP: 7.1-fpm-based image simplifies the integration of critical libraries and
extensions, such as PDO for database interaction, GD for image manipulation, mcrypt for
encryption, and BCMath for precise arithmetic. Tools like Opcache and xDebug further enhance
performance and debugging efficiency. Opcache, for instance, precompiles PHP scripts into
bytecode, reducing the overhead of repeated parsing and compilation. Extensions like Redis
and Memcached provide memory caching mechanisms, offloading repetitive operations from
databases and speeding up application response times.

The integration of health checks through Dockerfile commands ensures container reliability
by monitoring endpoints and recovering from failures. Custom build arguments allow optional
extensions like SOAP or xDebug to be conditionally installed, tailoring the image to specific
project needs. These features, combined with modular configuration options, enable flexible
adaptation without rebuilding the entire image.

The consolidated Docker image offers significant advantages, including streamlined
onboarding for new developers, modularity through optional extensions, and improved
performance with caching mechanisms. By reducing manual setup and configuration conflicts, the
image promotes a unified interface across development, staging, and production environments.
The portability of Docker images supports seamless deployment across diverse systems,
enhancing both security and scalability. Through these practices, Docker-based environments
empower PHP developers with a robust, efficient, and reproducible toolkit tailored to modern
development needs.

Key words: caching, extensions, debugging, configuration, environment, database.

Cementok B. B. Onmumizayis npoyecy 10KanbHoi po3pooxu 3a 0onomozoro oopasy Docker
PHP, akuii nocmagnacmpca 3 NOGHUM HAOOPOM iHCIMPYMeHmi6 i3 KOPOOKU — po3uiUpents
npooykmugHocmi ma onmumizayiy

Onmumizayis npoyecie 10KATLHO2O PO3GUMKY YACMO 3ANeAHCUMb IO 3a0e3neUeH s SHYY-
Kocmi ma npoOYKMuUHOCMI KOXCHO20 enemenma cepedosuwya. Y PHP oonum i3 naiieghex-
MUBHIWUX NI0X0018 00 Q0CSAcHeHHs: makoi onmumizayii € suxopucmanms obpazie Docker, sixi
MICmsamb OCHOGHI PO3WUPEHHs. Ma THCMpYMeHmu OJisl Keuly@aHHs, HANa200JiCeHHs. ma Hala-
wmyeanusi npooykmuenocmi. Komnnexcuuii obpas Docker, sikuii inmeepye Opcache, Redis,
Memcached, BCMath i xDebug pasom 3 inwumu incmpymenmamu, nog’azanumu 3 PHP, mini-
MI3Y€E HAKAAOHT umMpamu Ha 3MIHy KOH@ieypayii cepedosuwa ma npuckoproe poooui npoyecu
po3pobuukie. Buxopucmosgyiouu Docker Compose, po3pobnuku mosxcyme uje Oinvuie onmumizy-
samu yetl npoyec, suznavarouu maxi cepgicu, ax MySQL, Nginx i RabbitMQ, 6 o0Homy KoHI-
ypayiunomy gaiini, 3a6e3neuyioun y3200HCeHICMb MINC YieHamu Komanou. Leil nioxio ycysae
KOHIIKMU, WO BUHUKAIOMb Yepe3 HegionogioHicme eepciil abo poswupenv PHP, i ckopouye

| TaBpiticeknit HaykoBHH BicHHK Ne 1

184 |

yac, sumpaveHull Ha Halawmyeanus cepedosuwya epyury. Cmeopents oopasy Ha ocrnosi PHP:
7.1-fpm cnpowye inmeepayito kpumuunux Oibniomex i poswupenv, makux sk PDO ona e63a-
emMo0ii’ 3 6azor danux, GD 0na 06pobru 306pasicensb, mcrypt ons wugpysanus ma BCMath
0151 mouHux apugmemuynux oouuciens. Taxi incmpymenmu, sx Opcache i xDebug, we 6inviue
niosUWYIOMb NPOOYKMUBHICMb | ehekmugHicms Hanazooddcenns. Opcache, Hanpukiao, none-
peonvo komnimoe ckpunmu PHP y 6aiim-ko0, 3MeHwyouy Hakaaoni umpamu Ha no8mopHuUil
ananiz i xkomninayiro. Taxi poswupenns, sk Redis i Memcached, 3abe3neyyroms mexanizmu
Keuty8anus nam smi, pO36anmaicyiouu nosmoproeani onepayii 3 6a3 0aHux i NPUCKOPIOIOYU 4ac
6i0n06idi npoepamu. Inmezpayis nepegipox npayezoamuocmi 3a donomozorw Docker-ghatino-
BUX KOMAHO 3a0e3neyye HA0IHICMb KOHMEUHEPa UWLISIXOM MOHIMOPUHZY KIHYe8UX MOYOK I 8i0-
Hognenns nicia 300i6. Cneyianvni apeymenmu 306ipku 003601A10Mb YMOGHO BCMAHOBNI08ANU
dooamxogi posuupenns, sk-om SOAP abo xDebug, aoanmyrouu 300pasxcennsi 00 KOHKpEmHux
nompeb npoexmy. Lli ¢pyHxyii 6 nOEOHAHHI 3 MOOYIbHUMU NApamempamu KoOH@ieypayii 3abe3-
neuylome cHyuky aoanmayito 6e3 nepedyoosu 6cvozo obpasy. Konconioosanuii obpas Docker
NPONOHYE 3HAUHI Nepesazu, 30KpeMa Cnpowery adanmayiio Ois HoGUx po3poOHUKIE, MOOYTb-
HICMb 3a605KU 000AMKOGUM POSUUPEHHAM | NOKPAWeHy npoOYKMUGHICMb 3A60[KU MEXAHI3-
Mam Keuty8auHs. IMeHuLyouy KOHGIiKmu Halaumysans i Kongizypayiil epyuny, oopas cnpuse
CMBOpPerHI0 €0UH020 IHmepdghelicy ceped cepedosuy po3pooKU, NOCMAHOBKYU MA UPOOHUYMEA.
Topmamusnicme obpazie Docker niompumye niasHe po32opmanHs 6 Pi3HOMAHIMHUX CUCHe-
max, nioguwyrouu 6e3nexy ma macumadosanicmns. 3a80AKU YuM NPAKMUKam cepedosuuyd Ha
ocnosi Docker nadaroms pospoonuxam PHP naodivinuil, epexmusruil i 6i0meopoganu iHcmpy-
MeHmapitl, a0anmosanutl 00 Cy4acHux nompeb po3pooxu.

5 Knwwuoei cnoea: rewysanus, posutupenHs, Oebacine, Kongicypayisa, cepedosuue, 6asza

aHuXx.

Introduction and Problem Statement. Optimizing the local development environ-
ment is crucial for enhancing both productivity and flexibility. In the context of PHP
development, achieving this balance often requires using pre-configured solutions that
simplify workflows while maintaining high performance. Docker has become a power-
ful tool for containerizing development environments, allowing developers to integrate
essential tools and extensions into a single, reproducible system. By combining compo-
nents such as Opcache, Redis, Memcached, and xDebug into a single image, developers
can eliminate repetitive setup tasks and focus on building reliable applications. Fur-
thermore, using Docker Compose facilitates seamless service integration, ensuring uni-
form configurations for team members and minimizing potential conflicts. This study
explores how tailored Docker images can simplify PHP development while enhancing
performance and scalability.

Analysis of Recent Research and Publications. The study in [1] examines the
methodology for installing PHP extensions in Docker images without using PECL,
which has been disabled by default since PHP 7.4. It provides step-by-step instructions
for manually installing extensions like APCu, Redis, Igbinary, and MongoDB using
Docker commands and scripts. By utilizing tools like docker-php-ext-configure and
docker-php-ext-install, developers can maintain clean, modular Docker files tailored
to specific project requirements. The paper also discusses challenges that arise during
manual installations, particularly with extensions like MongoDB, which involve sub-
modules and multi-stage builds.

Through practical examples, the work demonstrates how to build a robust Docker
environment for PHP development, emphasizing flexibility, performance, and modu-
larity. Methods for integrating common extensions, enabling opcache, and fine-tuning
configurations for improved caching and serialization are described in detail. The result-
ing Dockerfile encapsulates a clean, extensible setup that supports new PHP versions
while ensuring compatibility and maintainability. This practical guide helps developers
overcome limitations related to PECL deprecation by offering alternative approaches to
building effective PHP environments for specific projects.

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

| 185

The study in [2] evaluates the comparative performance of PHP frameworks — Lara-
vel, Symfony, and Codelgniter — focusing on their suitability for various web develop-
ment needs. PHP frameworks based on the Model-View-Controller (MVC) architecture
have become essential tools for creating scalable, maintainable, and efficient web appli-
cations. Analyzing these frameworks using the QSOS evaluation method and bench-
marking criteria, including requests per second, memory usage, response time, and file
requirements, the study highlights their relative strengths and limitations.

The assessment underscores Laravel’s dominance in handling a high number of
requests per second and achieving the lowest response times, making it suitable for large-
scale rapid development projects. While Symfony is robust and feature-rich, it requires
more experienced developers for complex applications. Codelgniter, being lightweight
and flexible, is best suited for small to medium projects with simpler requirements. The
QSOS evaluation also highlights that Laravel and Symfony align with modern develop-
ment standards, whereas Codelgniter struggles to meet contemporary demands.

These results highlight the importance of selecting a framework based on specific
project needs, considering factors such as ease of use, scalability, technical capabilities,
and infrastructure requirements. Ultimately, the study demonstrates that choosing a PHP
framework significantly impacts development efficiency, maintainability, and the qual-
ity of web applications.

Additionally, noteworthy contributions from scholars such as V. Semeniuk [3],
J. Zhao, Y. Lu, K. Zhu, Z. Chen, H. Cefuzz [4], J. Watkins [5], T. Sanoop [6], S. Neef,
L. Kleissner [10], L. Moroz [11], J. Huang, J. Zhang, J. Liu, C. Li, R. Dai [12] and others
are acknowledged.

Despite the documentation above, developing methodologies for containerizing PHP
extensions within Docker images remains underexplored and requires further study.

Task Formulation. This work aims to develop a methodology for containerizing
PHP extensions to enhance performance and optimize the development process using
Docker.

Presentation of the Main Research Material. The optimization of local devel-
opment processes often depends on ensuring that every element of the environment is
configured to provide both flexibility and performance. When working with PHP, one
of the most effective ways to achieve this configuration is by using a Docker image
that comes with a predefined set of extensions and tools for caching, debugging, and
performance tuning out of the box. Relying on a single image that integrates Opcache,
Redis, Memcached, BCMath, and xDebug, along with other PHP-associated tools,
reduces the overhead of constant environment reconfiguration and accelerates devel-
opers’ workflows.

Using Docker Compose in conjunction with the PHP image can further simplify
this process by integrating the ability to define services such as MySQL, Nginx, and
RabbitMQ into a single configuration file. This aspect is particularly important in con-
texts where multiple team members require consistent environment configurations, as it
ensures consistency, eliminates conflicts caused by mismatched PHP versions or exten-
sions, and reduces the time spent on manual environment setup. Utilizing Docker for
image creation ensures portability and reproducibility, enabling developers to retrieve
the image and start working without having to manage underlying configuration details.

By building an image based on PHP: 7.1-fpm, the integration of any required libraries
and extensions becomes easier, meaning that from the moment the container is created
and launched, all critical extensions such as PDO (MySQL, PostgreSQL), GD for image
manipulation, mcrypt for encryption, and BCMath for precise arithmetic calculations

| TaBpiticeknit HaykoBHH BicHHK Ne 1

186 |

are already supported. PDO facilitates seamless database interactions by acting as an
interface for connecting to multiple databases. By abstracting database operations, it
allows developers to execute queries, retrieve results, and manage transactions without
relying on database-specific syntax, making it especially useful in applications requiring
compatibility with various database management systems.

The integration of periodic health checks using Dockerfile commands ensures the
expected operation of the container and can restore it in case of a failure. A typical
health check for PHP-FPM includes sending a request to a predefined endpoint and ver-
ifying the response status: HEALTHCHECK —interval=30s — timeout=10s — start-peri-
od=5s — retries=3 CMD curl -f http: // localhost: 9000 || exit 1

Additional functionality can be implemented through build arguments, which direct
Docker to install and configure optional extensions such as SOAP or xDebug. SOAP
enables the development of web services by simplifying the exchange of structured
information between applications over the network. It provides a standardized commu-
nication protocol that supports various transport mechanisms such as HTTP or SMTP.
xDebug is a versatile extension for debugging and profiling PHP applications. It allows
developers to gain deep insights into code execution by providing features such as
stack trace visualization and breakpoint handling. Application performance profiling
is achieved by generating detailed reports that highlight bottlenecks in code execution.
This practice ensures that the base image remains relatively lightweight while offering
the flexibility to add or remove components based on project needs.

From a performance standpoint, caching plays a critical role, especially in
resource-intensive web applications. The inclusion of Redis and Memcached as optional
PHP extensions enables developers to quickly activate caching layers without worrying
about dependency conflicts or initial software installation. After building the image, it
can be launched by mapping port 9000 and mounting a local directory to / var / www
within the container, providing immediate access to an environment configured for run-
ning PHP-based applications.

One of the most critical features of this image is the inclusion of performance-driven
extensions such as Opcache. By storing precompiled bytecode in memory, Opcache sig-
nificantly reduces the overhead associated with parsing and compiling PHP scripts for
every request. Considering that the total execution time of a PHP request can be broken
down into parsing, compiling, and running the code, caching through Opcache directly
impacts the compilation phase by skipping it for subsequent requests.

When bytecode caching is activated, compilation becomes negligible after the first
request, thereby improving overall response times in high-load scenarios. Another crit-
ical optimization factor is the use of Redis or Memcached extensions, which provide
in-memory storage mechanisms to reduce database load and speed up repetitive oper-
ations. By caching frequently manipulated data in RAM, these tools minimize costly
operations such as database access or external API calls, thus enabling faster page loads.

In environments relying on distributed caching across multiple servers or containers,
Memcached proves particularly valuable for horizontally scaled solutions, while Redis
offers additional functionalities such as data persistence and pub / sub messaging. By
shifting part of the input / output (I / O) load to memory, the time required for such
operations is significantly reduced.

Moreover, for development teams dealing with large or high-precision numbers,
having BCMath installed by default simplifies handling complex operations without
risking loss of precision. Additionally, for debugging and profiling purposes, xDebug
is typically used only in local environments, as it can negatively affect performance.

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

| 187

Activating it via a build argument allows seamless toggling during the build process,
avoiding the need to maintain separate Dockerfiles or perform manual installations.

To build the image, navigate to the directory containing the target Dockerfile and
execute the following command: docker build -t php — 7. 1-custom

This command instructs Docker to copy the relevant configuration files for xDebug
and SOAP while building the container image. Build arguments correspond to envi-
ronment variables, such as INSTALL XDEBUG or INSTALL AEROSPIKE, within
the Docker build context. This facilitates the conditional execution of installation and
compilation processes for selected extensions: docker build — build-arg INSTALL XDE-
BUG=true — build-arg INSTALL SOAP=true -t php — 7.1-custom

This structure allows Dockerfiles to remain flexible and manageable, avoiding mon-
olithic containers with unnecessary tools. Once the image is built, the container can be
launched, and PHP-FPM exposed on port 9000, by running the command: docker run
-d -p 9000:9000 — v $(pwd): / var / www php — 7.1-custom

In this setup, the current directory on the host machine is mounted to / var / www
within the container, which is the standard directory for PHP-FPM processes. This
ensures that any changes made on the local machine are immediately accessible to the
container for testing or content population. Alongside these runtime instructions, it is
possible to override certain configuration files related to PHP, xDebug, or Opcache by
mounting local versions of php. ini, xdebug. ini, or opcache. ini. This approach aligns
configuration management with versioning, allowing performance parameters to be
adjusted without rebuilding the entire image and providing an additional layer of cus-
tomization based on development needs.

Consolidating all the described components within a single image simplifies the
development cycle in several ways. First, it significantly reduces the onboarding process
for new team members, who no longer need to individually set up components such as
MySQL, Redis, or Memcached. Instead, they can simply clone the repository and exe-
cute a single build command.

Additionally, the ability to deactivate or activate optional extensions during the build
process ensures greater modularity of containers. For example, if a specific project does
not require Memcached but relies on Redis, the Docker build process can be adjusted
accordingly, ultimately optimizing both disk usage and overall performance. The overall
consolidated algorithm for building the Docker image is expressed as follows (table 1).

Due to the inherent advantages of containerization, a Docker-based PHP 7.1 envi-
ronment offers a unified interface across development, staging, and production environ-
ments. From a security perspective, Docker containerization ensures the isolation of the
PHP environment from the hosting system, reducing the risk of system vulnerabilities.
Furthermore, the portability of Docker images allows for consistent deployments across
different environments, from local to cloud systems.

Conclusions. The use of Docker in PHP development provides a unified, efficient,
and secure approach to managing development environments. By integrating critical
tools and extensions, developers can reduce overhead, enhance performance, and ensure
consistent configurations across teams. The portability and modularity of Docker ena-
ble seamless transitions between development, staging, and production environments,
supporting modern software workflows. With features such as caching, debugging, and
conditional extension installation, tailored Docker images not only improve developer
productivity but also facilitate the creation of scalable and maintainable applications.
Ultimately, Docker provides developers with the flexibility to meet the demands of
diverse projects while maintaining high standards of performance and reliability.

TaBpiticeknit HaykoBHH BicHHK Ne 1

188 I

Table 1
Algorithm for Building and Configuring a Docker PHP Environment
RUN docker-php-ext-install pdo pdo_mysql pdo_pgsql gd mcrypt bemath /
&& pecl install redis memcached /
&& docker-php-ext-enable redis memcached
ARG INSTALL SOAP=false
ARG INSTALL XDEBUG=false
ARG INSTALL AEROSPIKE=false
RUN if [«$INSTALL_SOAP» = «true»]; then docker-php-ext-install soap; fi /
&& if [«SINSTALL XDEBUG» = «true»]; then pecl install xdebug && docker-php-
ext-enable xdebug; fi /
&& if [«<$INSTALL AEROSPIKE» = «true»]; then pecl install aerospike && docker-
php-ext-enable aerospike; fi
COPY configs / php. ini / usr / local / etc / php / php. ini
COPY configs / php-fpm. pool. conf/ usr / local / etc / php-fpm. d / www. conf
COPY configs / xdebug. ini / usr / local / etc / php / conf. d / xdebug. ini
COPY configs / opcache. ini / usr / local / etc / php / conf. d / opcache. ini
COPY configs / aerospike. ini / usr / local / etc / php / conf. d / aerospike. ini
EXPOSE 9000
WORKDIR / var / www
CMD [«php-fpm»]

Source: developed by the author

BIBLIOGRAPHY:

1. Laviale O. Installing PHP extensions from source in your Dockerfile. Olvivi:
website. 2019. URL: https://olvlvl.com/2019-06-install-php-ext-source.html (last
accesed: 15.01.2025).

2. Laaziri M., Benmoussa K., Khoulji S., Kerkeb L. A comparative study of PHP
frameworks performance. Procedia Manufacturing. 2019. Vol. 32. P. 864-871. DOI:
10.1016/j.promfg.2019.02.295.

3. Semeniuk V. Automated build for docker-php image. Docker Hub: website. 2025.
URL: https://hub.docker.com/r/vadymsemeniuk/docker-php (last accesed: 15.01.2025).

4. Zhao J., Lu Y., Zhu K., Chen Z., Huang H. Cefuzz: A directed fuzzing framework
for PHP RCE vulnerability. Electronics. 2022. Vol. 11. Ne 5. P. 758. DOI: 10.3390/
electronics11050758.

5. Watkins J. PCOV — CodeCoverage compatible driver for PHP. GitHub: website.
2023. URL: https://github.com/krakjoe/pcov (last accesed: 15.01.2025).

6. The PHP Group. PHP: uopz — Manual. PHP: website. 2023. URL: https://www.
php.net/manual/en/book.uopz.php (last accesed: 15.01.2025).

7. The PHP Group. PHP: register shutdown function — Manual. PHP: website.
2023. URL: https://www.php.net/manual/en/function.register-shutdown-function.php
(last accesed: 15.01.2025).

8. Sanoop T. XVWA is a badly coded web application written in PHP / MySQL that
helps security enthusiasts to learn application security. GitHub: website. 2015. URL:
https://github.com/s4n7h0/xvwa (last accesed: 15.01.2025).

9. Q-Success. Usage statistics and market share of PHP for websites. Web Technology
Surveys. 2023. URL: https://w3techs.com/technologies/details/pl-php (last accesed:
15.01.2025).

10. Neef S., Kleissner L. PHUZZ: A grey-box fuzzer for PHP web applications.
GitHub: website. 2024. URL: https://github.com/gehaxelt/phuzz (last accesed:
15.01.2025).

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

| 189

11. Moroz L. bWAPP latest modified for PHP7. GitHub: website. 2018. URL:
https://github.com/Imoroz/bWAPP (last accesed: 15.01.2025).

12. Huang J., Zhang J., Liu J., Li C., Dai R. UFuzzer: Lightweight detection of
PHP-based unrestricted file upload vulnerabilities via static-fuzzing co-analysis.
24th International Symposium on Research in Attacks, Intrusions and Defenses.
Association for Computing Machinery. New N. Y. York, USA, 2021. P. 78-90. DOI:
10.1145/3471621.3471859.

REFERENCES:

1. Laviale, O. (2019). Installing PHP extensions from source in your Dockerfile.
Olvlvi. Retrieved from https://olvlvl.com/2019-06-install-php-ext-source.html
[In English].

2. Laaziri, M., Benmoussa, K., Khoulji, S., & Kerkeb, L. (2019). A comparative
study of PHP frameworks performance. Procedia Manufacturing, 32, 864—871. https://
doi.org/10.1016/j.promfg.2019.02.295 [In English].

3. Semeniuk, V. (2025). Automated build for docker-php image. Docker Hub.
Retrieved from https://hub.docker.com/r/vadymsemeniuk/docker-php [In English].

4. Zhao, J.,Lu, Y., Zhu, K., Chen, Z., & Huang, H. (2022). Cefuzz: A directed fuzzing
framework for PHP RCE vulnerability. Electronics, 11 (5), 758. https://doi.org/10.3390/
electronics11050758 [In English].

5. Watkins, J. (2023). PCOV — CodeCoverage compatible driver for PHP. GitHub.
Retrieved from https://github.com/krakjoe/pcov [In English].

6. The PHP Group. (2023). PHP: uopz — Manual. PHP. Retrieved from https://www.
php.net/manual/en/book.uopz.php [In English].

7. The PHP Group. (2023). PHP: register shutdown_function — Manual. PHP.
Retrieved from https://www.php.net/manual/en/function.register-shutdown-function.
php [In English].

8. Sanoop, T. (2015). XVWA is a badly coded web application written in PHP /
MySQL that helps security enthusiasts to learn application security. GitHub. Retrieved
from https://github.com/s4n7h0/xvwa [In English].

9. Q-Success. (2023). Usage statistics and market share of PHP for websites. Web
Technology Surveys. Retrieved from https://w3techs.com/technologies/details/pl-php
[In English].

10. Neef, S., & Kleissner, L. (2024). PHUZZ: A grey-box fuzzer for PHP web
applications. GitHub. Retrieved from https://github.com/gehaxelt/phuzz [In English].

11. Moroz, L. (2018). bWAPP latest modified for PHP7. GitHub. Retrieved from
https://github.com/lmoroz/bWAPP [In English].

12. Huang, J., Zhang, J., Liu, J., Li, C., & Dai, R. (2021). UFuzzer: Lightweight
detection of PHP-based unrestricted file upload vulnerabilities via static-fuzzing
co-analysis. 24th International Symposium on Research in Attacks, Intrusions and
Defenses. Association for Computing Machinery, New York, NY, USA, 78-90. https://
doi.org/10.1145/3471621.3471859 [In English].

