Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril

63

UDC 004.051
DOI https://doi.org/10.32851/tnv-tech.2022.3.7

DESIGN OF WEB-APPLICATIONS IN THE CONTEXT
OF OPTIMIZING THEIR PERFORMANCE

Slabinoha M. O. — Ph.D. in Engineering,

Associate Professor at the Department of Computer Systems and Networks
Ivano-Frankivsk National Technical University of Oil and Gas

ORCID ID: 0000-0002-7296-0356

Scopus Author ID: 57283728000

Chaban S. V. — Student at the Department of Computer Systems and Networks
Ivano-Frankivsk National Technical University of Oil and Gas
ORCID ID: 0000-0001-5830-7046

The purpose of this paper is to highlight recommendations for designing web-based sofiware
to maximize the speed of rendering the user interface and confirm these recommendations with
the developed web-application.

The subject of this paper is very important, because web applications consume more and more
resources both on the client side and server side. The Web became the large dumping ground
for digital waste, and instead of saving the planet from increasing pollution through digitali-
zation processes, it constantly demands production of more powerful digital devices for clients
and highload server systems for data servers, which leads to more physical waste as a result. The
aim to reduce the amount of computing where this is possible should be the primary goal for each
software developer, including developers of web applications. That’s why the concept of sustain-
able web development is so important right now to the whole of humanity.

This paper provides analysis of the subject area, comparative characteristics of the compar-
ative characteristics of approaches to application design and formation of performance crite-
ria, definition of recommended approaches, introduces the tools for the example web applica-
tion implementation, and designing process for a web application based on previously defined
approaches and testing its performance.

The methods of designing web-oriented software are improved with separation of logic
and mapping components, taking into account the recommendations for improving the perfor-
mance of the web application. This allows to achieve high performance of the web application.

The practical importance of the paper is the development of recommendations for approaches
to the design of web-based software, which can then be used in the design of other web applica-
tions.

Key words: sustainable web development, web applications, performance optimization, soft-
ware development, client-server systems.

weUOKoOIl

Memoro oanoi cmammi € 6uUOileHH PEKOMEHOAYill U000 NPOEeKMYSanHs 8eO-000amKie
OJIsL. MAKCUMATIbHOIL WBUOKOCMI 8I000padcenHs iHmepgelicy Kopucmysaua ma po3pooxa eeo-
dooamxy, wo 6yde 6a3y8amucs Ha OCHOBI OAHUX PEKOMEHOAYil 3 Memo NiOmeepodicents ix
epexmueHocmi.

Ipobremamuxa cmammi € akmyanbHOW, OCKIIbKU 6e0-000amKU CRONCUBAIOMb 6Ce Oiblue
pecypcie Ak Ha Cmoponi KIienma, max i na cmopoHi cepgepa. Mepedica cmana genuxum 36anuujem
yugposux 6i0xo0dis, i 3amicmev moeo, wob epamyeamu niaueny 6i0 3p0Cmari020 3a0pyOHeHHs
yepes npoyecu yugposizayii, B0HA NOCMIUHO BUMALAE BUPOOHUYMEA NOMYHCHIUUX YUPPOBUX
npucmpois O KAIEHMIE | BUCOKOHABAHMANCEHUX CEPBEPHUX CUCmeM Ol cepeepié OaHuX,
wo 6 pezynomami npu3eo0ums 00 30inbuieHHA 3a0pYOHeHHs Yepe3 YMUN3ayilo 3aCmapiiux
npucmpoig. OCHOBHOIO MEMOI0 KOICHO20 PO3POOHUKA NPOSPAMHO20 3A0e3ne4eHHs, KUY
PO3pOOHUKI6 6e0-000amKi, Mae Oymu CKOpoueHHsA o0bcacy obuucieHb y dodamkax, Oe ye
mooicnugo. Ocv woMmy KOHYenyis 8eH-po3pooKU 6 KOHMEKCMI CIAN020 PO3GUINKY 3apaA3 HACMITbKU
8aX#CIUBA O] BCbO2O TOOCMEA.




| Taspiticeknit HaykoBuit BicHHK Ne 3

64|

YV yiti pobomi nasedeno ananiz npeomemnoi obracmi, nPo6edeHO NOPIGHANbHULL AHANI3 NIO-
X00i8 00 npoekmyeants 6e0-opicHMosaHux 000amxie ma cghopmogano Kpumepii ix egpexmus-
Hocmi. Takoow 8U3HAUEHO PEeKOMEHO0B8AHI NiOX00U 00 pO3POOKU 8e6-000amKi8, UOPAHO IHCMPY-
Menmu 071 po3POOKU MeCmogo2o 8eH-000amKy, a MAaKodIC BUCBIMIEHO NPOYec NPOEKMYEaHHs.
6€06-000amKa Ha OCHOBI NONEPEOHbO BUSHAUEHUX NIOX00I8 Ma MeCMYBaHHs 1020 eeKMUBHOCHII.

Boocronaneni memoou npoexmyganms 6e6-0picHMOBAHO20 NPOSPAMHO20 3a0e3NeYeHts 3d
DAXYHOK DO30iNeHHsI KOMNOHEeHMi6 102IKU ma 6i000pAXNCEHHs, 3 YDAXYEBAHHAM DeKoMeHOayill
w000 NIOBUWEHHSL NPOOYKMUBHOCTI 8e0-000amKYy, w0 0036015€ 00CAemU 8UU0] WBUOKOOII.

Tpaxkmuune 3HauenHs cmammi nosieae y po3pooyi pekomeroayiii wo0o nioxodie 00 npoex-
my6anHsl 8e6-000amKi8, SIKi NOMIM MOXNCYNb OYMU BUKOPUCIAHI ) 6eO-DO3POOYI.

Knrouogi cnosa: 6e6-po3podxa 8 KOHMEKCMI CMAn020 po3sUmKY, 60-000amox, OnmuMizayis
NPOOYKMUBHOCHI, PO3POOKA NPOSPAMHO20 3a0e3neueHts, KAiEHM-CcepeepHi cCucmemu.

Introduction. Web development is a complex, long and multi-stage process.
There are too many different approaches to web application development today. Many
beginners, as well as experienced engineers, delve into modern and popular technologies,
but forget about the fundamentals of how the web works. As a result, developers choose
the wrong foundation for their web applications, which can greatly affect the quality
of the final product.

One of the main decisions that web developers have to make is where to implement
logic and mapping in their program. This can be difficult because there are several many
ways to create a website. To better understand the architectures to choose from when
making a decision, youneed to have a clear understanding of each approach and the agreed
terminology that can be used. The differences between these approaches help illustrate
the trade-offs in rendering web applications through the prism of performance. That is
why the task of creating methods and approaches to improve the performance of web
applications at the design stage is relevant.

Therefore, the aim of the research was to develop recommendations for the design
of web-based software in order to maximize the speed of rendering the user interface,
which will be confirmed by the development of the application according to these
recommendations.

Main part of the research. One of the most popular tools for estimating web page
load speeds is Google PageSpeed Insights. PageSpeed Insights (PSI) reports on page
performance on both mobile and desktop devices, as well as suggestions on how to
improve the page. PSI provides both laboratory and field data about the page. Laboratory
data is useful for troubleshooting performance because it is collected in a controlled
environment. However, PSI does not take into account real critical places. Field data is
useful for obtaining real-world user experience, but it has a more limited set of metrics.
PSI also provides scores on other categories, such as SEO optimization, accessibility,
and validation of PWA (Progressive Web Application) criteria.

It should be noted that PSI provides very general information about the speed
of loading web pages and developers, in general, should look at these results as one
of the metrics for building a website ranking in search engines, because this tool was
designed for this purpose . When debugging web applications, you need to make more
use of the developer's built-in browser tools (Performance and Network tabs) and other
additional tools that will help you find the source of the problem.

However, it is not necessary to completely abandon PSI in terms of debugging a web
application, as it provides useful information about key web metrics that can be used as
a good place to start finding the problems themselves.

Key web metrics are a common set of performance signals that are important to any
web experience. The main indicators of Web Vitals are FID, LCP and CLS, and they can
be summarized at the page or source level.




Komn’torepHi Hayku Ta iHopManiiiHi TexHOMOTIT | 65
I

Largest Contentful Paint (LCP). The download speed of the main content (titles, text,
images, videos, etc.) measures how productively the download is performed, namely
the time of the longest render of a text block or image visible in the preview area,
counted from the start of page loading. To ensure user convenience, the LCP should be
within 2.5 seconds of starting to load the page.

First Input Delay (FID). The time it takes to first interact with the content measures
the interactivity of the webpage, namely the time from when the user first interacts with
the page (ie, when he clicks a link, clicks a button, or uses a JavaScript-based control)
until the browser actually will be able to begin to respond to signals from event handlers
in response to this interaction. To ensure user convenience, the FID of pages should not
exceed 100 milliseconds.

Cumulative Layout Shift (CLS). Aggregate web page layout offset measures visual
stability. Unexpected movement of page content usually occurs due to asynchronous
loading of resources or dynamic addition of DOM elements to the page on top
of existing content. This may be due to an image or video of unknown size, a font that
appears larger or smaller than its backup, third-party ads, or resizable widgets. To ensure
the convenience of users, the CLS should not exceed 0.1.

Let’s consider four main types of web-application user interface generation. Those
are server-side rendering, static rendering, client-side rendering and hydration rendering.

Server-side rendering (SSR) generates a full-fledged server-side web page when
the user navigates between web pages. This avoids additional requests for client-side
data, as they are processed before the browser receives a response.

Server mapping typically creates a quick first Paint and a first Contentful Paint.
Executing web page logic and server-side mapping avoids sending large amounts
of JavaScript to the client, which helps to achieve a fast time to interactivity of the web
page (Time to Interactive).

Figure 1. Server-side rendering scheme

Static rendering is the simplest of all web application render methods. A static web
page is rendered during application build and provides fast first paint, fast first contentful
paint, and time to interactivity, provided the number of JSs on the client side is limited.
Unlike server-side visualization, static mapping can achieve consistently fast time to
the first byte (TTFB) because HTML for a page does not need to be generated on the fly
(runtime). Typically, a static rendering means creating a separate HTML file for each
URL in advance. Because HTML responses are pre-generated, static visualizations can
be deployed on multiple CDNSs to take advantage of caching.




| Taspiticeknit HaykoBuit BicHHK Ne 3

66|

Figure 2. Static rendering scheme

Client-side rendering (CSR) means the reproduction of pages directly in the browser
using JavaScript. All logic, data sampling, patterning, and routing are handled on
the client, not the server.

Figure 3. Client-side rendering scheme

Hydration, often referred to as universal or simply SSR, seeks to bridge the gap
between client-side mapping and server-side mapping by doing both. Navigation requests,
such as fully loading or reloading a page, are processed by a server that plays the web
application in HTML, then JavaScript and the data used for rendering are embedded in
the resulting document.

Figure 4. Hydration rendering scheme

Table 1 represents the advantages and disadvantages of each rendering approach.
Each approach has its own pros and cons, as well as purpose of usage - from small HTML
landing pages to heavy CRM applications and web-apps, so the question of choosing




67

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

the right rendering approach completely depends on web-development team decision
and should be based on aim of the web-app, it’s architecture, audience and other factors
that affect the size, complexity and scale of the developed application.

Table 1

Advantages and disadvantages of different rendering approaches
Approach Advantages Disadvantages
Fast initial rendering and time
to interaction
Static rendering Friendly to search engine
optimization
Incremental static regeneration

Poor scalability

Lack of dynamic content
Some users can see old version
of pages due to cache issues

Slow initial rendering

Bad for the search engine
optimization

Hard to optimize the
performance, javascript bundle
size is often too large

Lack of dynamic content
Most of the rendering work

is done on server so you need
powerful server systems when
you have a lot of users

Fast loading and navigation
Client side rendering | Single page app user
experience

Fast initial rendering
Friendly to search engine
optimization

Good browser support

Server Side rendering

Fast initial rendering Practically, you need to build

Friendly to search engine two applications - server side
Hydration optimization and client side

Dynamic content You need to receive the data

Streaming rendering before you show the content

The main recommendations on building fast effective web-interface are:

1) Use a CDN. Content Delivery Network (CDN) is a geographically distributed
network infrastructure that allows you to optimize the delivery and distribution of content
to end users on the Internet. The use of CDN helps to increase the download speed
of audio, video, software and other digital content by Internet users in the presence
of CDN;

2) Caching static and media files. Today, there are many browser APIs that allow you
to easily cache different types of client-side files, especially useful for web applications,
which are mostly displayed on the client side using JavaScript. Service Workers allow
you to cache static files with automatic revalidation. The Cache API provides a wider
range of capabilities for caching and controlling different types of media files;

3) Do not display content that the user does not see. If you do not display images,
videos and other heavy content that are not displayed in the user's display area, this will
greatly increase the speed of the initial display of the web page;

4) Using Web Workers. If you have to perform some difficult calculations when
displaying web pages, you should use Web Workers to take the load off the user interface;

5) Preload heavy pages. If you have JavaScript-heavy web pages, you can do
additional optimization by pre-loading heavy scripts with simpler, static web pages;

6) Use Lazy Loading. Lazy loading allows you to break the code of a web application
into JavaScript into pieces and download the necessary parts only when the user makes




Taspiticeknit HaykoBuit BicHHK Ne 3

68I

arequest. This greatly speeds up the first download of the web application, as the browser
does not need to wait until the entire bundle of the web application is loaded;

7) Choose the correct location of servers. It often happens that developers have one
server in one region and another server in a remote region from the first. This means that
the user has to wait much longer for a response, so it is recommended that you place
your servers and databases as close to each other as possible.

Taking into account these recommendations, the decision has been made to build
the web application that will follow them. Projecthub is a web application that gives
developers a centralized place to manage various aspects of their applications, such as
logging changes, receiving customer feedback, a roadmap, and more.

This project includes a variety of web pages, both public and private, and requires
a flexible approach to displaying different web pages, so this project is a good example
of developing a web application with different approaches to web page architecture.

Project was built using the technologies Next.js, Node.js, PostgreSQL, Prisma,
Railway and Supabase. Example of project page (search results page) and corresponding
requests list is shown on figure 5.

The result of PSI metrics is shown on figure 6. This result demonstrates that
the recommendations on building the web application are useful and help to improve web
application performance and user experience. Worth mentioning that none of the pages
has shown PSI score less than 92 points out of 100.

Figure 5. Example of user interface and requests list

Figure 6. Result of PSI metrics for one of the Projecthub’s pages




Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

69

Conclusions. As it might be seen from the obtained metrics, the recommendations
given during research allow to get good results when measuring the rendering
performance. As a conclusion, we need to say that any of the architecture can reach
high scores of rendering performance if web-developers will follow the mentioned
recommendations while building the web-application from scratch. However,
the “Software as a service” website builders like Wix or CMS’s like Wordpress are not
giving us as web-developers to change something in web application architecture, so
the problem of their performance optimization is open and should be discussed separately.

Acknowledgements. Authors want to thank the Armed Forces of Ukraine and all
the defenders of Ukraine that give us the possibility to proceed scientific and engineering
work in time of war.

BIBLIOGRAPHY:

1. Gerry McGovern. World Wide Waste: How Digital Is Killing Our Plane and What
We Can Do About It. Silver Beach, 2020. 171 p.

2. Onnaiin pecypc Web Dev: BeO-caidiT. URL: https://web.dev (nmara 3BepHEeHHS:
25.05.2022).

3. Iskandar, Taufan Fadhilah, et al. Comparison between client-side and server-side
rendering in the web development. In: IOP Conference Series: Materials Science and
Engineering. IOP Publishing, 2020. p. 21-36.

4. NAKANO, Yuusuke, et al. Web performance acceleration by caching rendering
results. In: 2015 17th Asia-Pacific Network Operations and Management Symposium
(APNOMY). IEEE, 2015. p. 244-249.

5. BEKE, Mathias. On the Comparison of Software Quality Attributes for Client-
side and Server-side Rendering. 2018. PhD Thesis. Department of Mathematics and
Computer Science of the Faculty of Sciences, University of Antwerp.

REFERENCES:

1. McGovern, G. (2020). World Wide Waste: How Digital Is Killing Our Planet and
What We Can Do About It. Silver Beach.

2. Let's build the future of the web, together. (2022). Web.dev. Retrieved May 25,
2022, from https://web.dev/.

3. Iskandar, T. F., Lubis, M., Kusumasari, T. F., & Lubis, A. R. (2020, May). Com-
parison between client-side and server-side rendering in the web development. In IOP
Conference Series: Materials Science and Engineering (Vol. 801, No. 1, p. 012136).
IOP Publishing.

4. Nakano, Y., Kamiyama, N., Shiomoto, K., Hasegawa, G., Murata, M., & Miyahara,
H. (2015, August). Web performance acceleration by caching rendering results. In 2015
17th Asia-Pacific Network Operations and Management Symposium (APNOMS) (pp.
244-249). IEEE.

5. Beke, M. (2018). On the Comparison of Software Quality Attributes for Client-
side and Server-side Rendering (Doctoral dissertation, Department of Mathematics and
Computer Science of the Faculty of Sciences, University of Antwerp).




