UDC 620.178.152:669-1 DOI https://doi.org/10.32782/tnv-tech.2023.2.7

REFINEMENT OF MICROSTRUCTURAL PARAMETERS OF THE CRYSTAL STRUCTURE OF COMPOUND BA₂MOO₅

Zavodiannyi V. V. – Candidate of Physical and Mathematical Sciences. Associate Professor at the Department of Hydraulic Engineering. Water and Electrical Engineering Kherson State Agrarian and Economic University ORCID ID: 0000-0002-8224-8215

Barium molybdates have a wide range of applications: in nuclear power, photoluminescent devices, solid-state lasers, photocatalysts, and gas sensing. They are used in microwave and thermoelectric devices. Ba_2MoO_5 belongs to this group of compounds. Several methods for its production are known from the literature. Ba_2MoO_5 is obtained by reactions: $BaMoO_4+BaCO_3 \rightarrow Ba_2MoO_5+CO_2$, $BaMoO_4+Ba_3MoO_6 \rightarrow 2Ba_2MoO_5$. This chemical can also be obtained from the reaction of $BaMoO_4$ with Mo and BaO_2 . Ba_2MoO_5 and Mo, $BaMoO_4$ were formed which did net react According to the state diagram of PaO MoO is the backware on BaMoO₄-+BaCO₃→Ba₂MoO₅+CO₂, BaMoO₄+Ba₃MoO₅→2Ba₂MoO₅ and Mo, BaMoO₄ were formed, which did not react. According to the state diagram of BaO-MoO₃, it borders on Ba₃Mo₇O₂₄ and BaMoO₄. It has a melting point of 1280° C in the eutectic and 1370 °C in the melt. The presence of Ba₃MoO₅ was determined by X-ray phase analysis using the database of powder diffractograms with the Brag-Brentano geometry, PDF-2. The spectrum of the compound is available in the card 025-0011. The synthesis of the compound whose diffraction spectrum is reported in card 025-0011, PDF-2 database (ICDD) for 2009 was the result of the reaction of BaCO₃ and MoO₃, taken in a molar ratio of 2:1, placed in a gold crucible and heated to 900 °C and kept in air for 4 days. From the analysis of the literature, it follows that Ba₂ MoO₅ crystallizes in orthorhombic syngony, has the Pnma symmetry group, lattice periods a = 7.4097A°, b = 5.7603A°, c = 11.3906A° and belongs to the K₂VO₂F₃ structure type. Using the above information on the crystal structure of the studied compound if the PDF-2 (ICDD) database for 2009. The values of the lattice periods were refined: a=7.408471A°, b=5.734523A°, c=11.469570A°, spatial symmetry group Pnma. Microstructural parameters: Ba(1) 4c x/a=0.178307; y/b=0.250000; z/c=0.416387; position filling factor s.o,f=1; Ba(2) 4c x/a=0.482515; y/b=0.250000; z/c=0.715824; s.o,f=1; Mo(1) 4c x/a=0.1585(9); y/b=0.250000; z/c=0.00671(5); s.o,f=1; O(1) 4a x/a=0; y/b=0; z/c=0; s.o,f=1; O(2) 4c x/a=0.731075; y/b=0.250000; z/c=0.001550; s.=1; O(3) 4c x/a=0.336331; y/b=0.250000; z/c=0.904934; s.o,f=1; O(4) 8d x/a=0.267908; y/b=0.134197; z/c=0.053091; s.o,f=1. **Key words:** crystal structure, Rietveld method, compound Ba₂MoO₅.

Key words: crystal structure, Rietveld method, compound Ba_2MoO_5 .

Заводянний В. В. Уточнення мікроструктурних параметрів кристалічної структури сполуки Ba₂MoO₅

Молі́бдати барію мають широкий спектр застосування: в ядерній енергетиці, фотолюмінесцентних пристроях, твердотільних лазерах, фотокаталізаторах, зондуванні газу. Застосовуються в мікрохвильових та термоелектричних пристроях. До цього ряду сполу́к застосовуються в мікрохвильових та термослектричних пристромх. До цього рудосу сполук належить і Ва₂MoO₅. Із літератури відомо декілька методів її отримання. Ва₂MoO₅ отри-мують за реакціями: Ва MoO_4 +Ba $CO_3 \rightarrow$ Ba₂ MoO_5 +CO₂, Ва MoO_4 +Ba₃ $MoO_6 \rightarrow$ 2Ba₂ MoO_5 Також дану хімічну речовину можна отримати в результаті реакції Ва MoO_4 з Mo i BaO₂ Утворювалися Ва₂ MoO_5 і Mo, Ва MoO_4 які не прореагували. Відповідно до діаграми стану ВаO-MoO₃ вона межує з Ва₃ Mo_7O_{24} та Ва MoO_4 . Має температуру плавлення 1280 °C за евтектикою, і 1370 °C з розплаву. Присутність Ва₂ MoO_5 визначалась в результаті рент-генівського фазового аналізу за допомосою бази даних порошкових дифрактограм з гео-матіско зйому. Браз-Брацтиро PDE-2. Спектр спохуци міститься в карти 025-001 метрією зйомки Брег-Брентано, PDF-2. Спектр сполуки міститься в картці 025-0011. Синтез сполуки, дифракційний спектр якої міститься в картці 025-0011, бази даних PDF-2 (ICDD) за 2009 рік відбувався в результаті реакції ВаСОЗ і МоОЗ, взятих в моляр-ному співвідношені 2:1, розміщених в золотому тиглі і нагрітих до 9000С та витри-маних протягом 4 діб на повітрі. З аналізу літературних джерел слідує, що Ва2МООЗ кристалізується в орторомбічній сингонії, має просторову групу симетрії Рпта, пері-оди решітки a=7,4097A0, b=5,7603A0, c=11,3906A0 і належить до типу структури K₂VO₂F₃. Використовуючи зазначені відомості про кристалічну структуру дослібжуваної сполуки було проведено уточнення мікроструктурних параметрів за спектром розміще-ним в картці 025-0011 бази даних PDF-2 (ICDD) за 2009 рік. Уточнені значення періодів решітки: a=7,408471A0, b=5,734523A0, c=11,469570A0, просторова група симетрії Рпта.

Мікроструктурні параметри: Ba(1) 4c x/a=0,178307; y/b=0,250000; z/c=0,416387; коефіціснт заповнення позицій s.o.f.=1; Ba(2) 4c x/a=0,482515; y/b=0,250000; z/c=0,715824; s.o.f.=1; Mo(1) 4c x/a=0,1585(9); y/b=0,250000; z/c=0,0671(5); s.o.f.=1; O(1) 4a x/a=0, y/b=0; z/c=0; s.o.f.=1; O(2) 4c x/a=0,731075; y/b=0,250000; z/c=-0,001550; s.o.f.=1; O(3) 4c x/a=0,336331; y/b=0,250000; z/c=0,904934; s.o.f.=1; O(4) 8d x/a=0,267908; y/b=0,134197; z/c=0,053091; s.o.f.=1.

Ключові слова: кристалічна структура, метод Рітвельда, сполука Ва₂МоО₅.

Introduction. Compounds of the Ba-Mo-O system have a wide range of properties. For example, they are used in nuclear power, photoluminescence, solid-state lasers, photocatalysts, gas sensing, microwave and thermoelectric properties [1]. The compound Ba_2MoO_5 is one of the representatives of this class. Therefore, the study of the properties and structure of this compound, in particular its crystal structure, is relevant.

The symmetry and lattice periods of this compound were determined and reported in [2]. Namely, the structure of Ba₂MoO₅ was assigned to the rhombic syngony with lattice periods $a = 7.412 \text{ A}^\circ$, $b = 5.769 \text{ A}^\circ$, $c = 11.380 \text{ A}^\circ$.

The method for obtaining this compound is reported in detail in [3]. The compound can be obtained by reactions:

 $BaMoO_4 + BaCO_3 \rightarrow Ba_2MoO_5 + CO_2$

 $BaMoO_4 + Ba_3MoO_6 \rightarrow 2 Ba_2MoO_5$

The phase diagram of BaO-MoO is given in [4]₃ Fig. 1.

Fig. 1. Phase diagram of BaO-MoO₃

According to it, the compound has a melting point of 1280 $^{\circ}$ C in the eutectic and 1370 $^{\circ}$ C in the melt.

Also, as a result of the reaction of $BaMoO_4$ with Mo and BaO_2 , Ba_2MoO_5 and Mo, $BaMoO_4$ were formed, which did not react [5].

In [6], the compound $Ba_2 MoO_5$ card 25-0011 JCPDS was observed by X-ray phase analysis using the PDF-2 database.

The aim of this work is to clarify the microstructural parameters of the compound $Ba_2 MoO_5$.

Research results. Information on the crystal structure of this compound can be found in [7]. The samples for the study were prepared from BaCO₃ and MoO₃ in a molar ratio of 2:1, heated to 900 °C in a gold crucible and kept in air for 4 days. Ba₂ MoO₅ crystallizes in rhombic syngony, with the *Pnam* symmetry group, Z = 4, and belongs to the structural type K₂VO₂F₃, and has lattice periods a = 7.4097(7)A°, b = 11.3906(8)A°, c = 5.7603(6)A° [7].

These data were taken as the initial ones for the structural model of the compound under study. The microstructural parameters $K_2VO_2F_3$ are given in Table 1. Spatial symmetry group *Pnma*, lattice periods $a = 7.415(1)A^\circ$, $b = 5.7637(6)A^\circ$, $c = 11.391(2)A^\circ$ [8].

Table 1

Atom	Wyck.	s.o.f.	x	У	Z
K(1)	4c	1,000000	0,190800	0,250000	0,592880
K(2)	4c	1,000000	0,477500	0,250000	0,282940
V	4c	1,000000	0,199500	0,250000	0,306000
0	8d	1,000000	0,177800	0,523300	0,389400
F(1)	4a	1,000000	0,000000	0,000000	0,000000
F(2)	4c	1,000000	0,037100	0,250000	0,805700
F(3)	4c	1,000000	0,272600	0,250000	0,091500

Microstructural parameters K₂VO₂F₃

The diffraction spectrum of the compound was obtained from the PDF-2 database for 2009 under the number 25-0011, taken at copper filtered radiation with a wavelength of $\pi = 1.54060$ Ű, with the Breg-Brentano survey geometry in UDF format.

The microstructural parameters were determined by the Rietveld method using the HighScore Plus 3.0 program.

Fig. 2. Crystal structure of Ba compound₂ MoO₅

Microstructural parameters of the structure of compound Ba₂MoO₅ Wvck. Atom s.o.f. х v \overline{Z} Ba1 4c 1,000000 0,178307 0,250000 0.416387 Ba2 4c 1,000000 0,482515 0,250000 0,715824 Mo1 4c 1,000000 0,1585(9)0,250000 0,0671(5) 01 4a 1,000000 0.000000 0,000000 0,000000 O2 1,000000 0,731075 0,250000 -0,001550 4c 0,336331 0,250000 0,904934 O3 4c 1,000000 0,267908 04 8d 1,000000 0,134197 0,053091

Microstructural parameters are shown in Table 2.

The compound belongs to the orthorhombic syngonium, the spatial symmetry group is *Pnma*, the refined lattice periods are a = 7.408471A°, b = 5.734523A°, c = 11.469570A°. The discrepancy factor is R = 8.11 %.

Conclusion. The crystal structure of the compound Ba_2MoO_5 was studied by the diffraction spectrum obtained in [7] and given in the PDF-2 database for 2009 (ICDD) under the number 025-0011, taken on a copper filtered radiation with a wavelength of $\pi = 1.54060A^0$ and a Breg-Brentano survey geometry.

The structure of the compound belongs to the orthorhombic syngonium, the *Pnma* symmetry group, with lattice periods a = 7.408471A°, b = 5.734523A°, c = 11.469570A°.

Microstructural parameters are shown in Table 2. The discrepancy factor is R = 8.11 %. The compound belongs to the structural type $K_2VO_2F_3$.

BIBLIOGRAPHY:

1. Smith A.L., Rutten, L., Epifano M., Konings R.J.M., Colineau E., Griveau J.-C., Gu'eneau C., Dupin N. Experimental studies and thermodynamic assessment of the Ba-Mo-O system by the CALPHAD method. *Journal of the European Ceramic Society.* 2021. Vol.41. P. 3664–3686. https://doi.org/10.1016/j.jeurceramsoc.2021.01.010

2. Шевченко Н.Н., Лыкова Л.Н., Ковба Л.М. О вольфраматах и молибдатах щелочноземельных металлов. *Журнал неорганической химии*. 1974. Том 19. № 4. С. 971–975.

3. Векслер С.Ф., Жуковский В. М. Синтез молибдатов бария Ва₂МоО₅ и Ва₃МоО₆. *Журнал неорганической химии*. 1974. Том 19. № 12. С. 3224–3228.

4. Ropp R.C. Chapter 10 – Group 6 (Cr, Mo and W) Alkaline Earth Compounds. *Encyclopedia of the Alkaline Earth Compounds*. Elsevier. 2013. P. 836. http://dx.doi.org/10.1016/B978-0-444-59550-8.00010-7

5. Bacon P.E. Searching for new niobium oxide based superconductors: an abstract of the thesis of the degree of Master of Science in Chemistry: Oregon State University. Oregon. 1995. 100 p.

6. Xing C., Li J., Wang J., Chen H., Qiao H., Yin X., Wang Q., Qi Z., Shi F. Internal relations between crystal structures and intrinsic properties of nonstoichiometric Ba_{1+x}MoO₄ ceramics. *Inorganic Chemistry*. 2018. Vol. 57. № 12. P. 7121–7128. https://doi.org/10.1021/acs.inorgchem.8b00841

7. McMurdie H.F., Morris M.C., Evans E.H., Paretzkin B., de Groot J.H., Hubbard C.R., Carmel S.J. Section 12-Data for 57 Substances. *Standard X-ray Diffraction Powder Pattern*: monograph/ R.W. Roberts. Washington, 1975. P. 10–11.

8. Ryan R.R., Mastin S.H., Reisfeld M. J. The crystal structure of $K_2VO_2F_3$, a nonlinear dioxovanadium (V) group. Acta Crystallographica Section B Structural Crystal-

66

Table 2

lography and Crystal Chemistry. 1971. Vol. 27. P. 1270–1274. https://doi.org/10.1107/ S0567740871003844

REFERENCES:

1. Smith A.L., Rutten, L., Epifano M., Konings R.J.M., Colineau E., Griveau J.-C., Gu'eneau C., Dupin N. (2021) Experimental studies and thermodynamic assessment of the Ba-Mo-O system by the CALPHAD method. *Journal of the European Ceramic Society*. Vol. 41, pp. 3664–3686. https://doi.org/10.1016/j.jeurceramsoc.2021.01.010

2. Shevchenko N.N., Lykova L.N., Kovba L.M. (1974) O volframatach i molibdatach schelochnozemelnyix metallov [About tungstates and molybdates of alkaline earth metals.] *Journal of Inorganic Chemistry*. Vol. 19, No. 4, pp. 971–975.

3. Veksler S.F., Zhukovsky V.M. (1974) Syntez molibdatov bariya Ba2MoO5 i Ba3MoO6. [Synthesis of barium molybdates Ba2MoO5 and Ba3MoO6.] *Journal of Inorganic Chemistry*. Vol. 19, No. 12, pp. 3224–3228.

4. Ropp R.C. (2013) Chapter 10⁻ Group 6 (Cr, Mo and W) Alkaline Earth Compounds. Encyclopedia of the Alkaline Earth Compounds. Elsevier. http://dx.doi.org/10.1016/B978-0-444-59550-8.00010-7

5. Bacon P.E. (1995) Searching for new niobium oxide based superconductors: an abstract of the thesis of the degree of Master of Science in Chemistry: Oregon State University. Oregon. 1995.

6. Xing S., Li J., Wang J., Chen H., Qiao H., Yin X., Wang Q., Qi Z., Shi F. (2018) Internal relations between crystal structures and intrinsic properties of nonstoichiometric Ba_{1+x}MoO₄ ceramics. *Inorganic Chemistry*. Vol. 57, No 12, pp. 7121–7128. https://doi.org/10.1021/acs.inorgchem.8b00841.

7. McMurdie H.F., Morris M.C., Evans E.H., Paretzkin B., de Groot J.H., Hubbard C.R., Carmel S.J. (1975) Section 12-Data for 57 Substances. Standard X-ray Diffraction Powder Pattern: monograph / R.W. Roberts. Washington, 1975. pp.10–11.

8. Ryan, R.R., Mastin, S.H., Reisfeld, M.J. (1971) The crystal structure of $K_2VO_2F_3$, a nonlinear dioxovanadium(V) group. *Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry*. Vol. 27, pp. 1270–1274. https://doi.org/10.1107/S0567740871003844