Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril

69

UDC 004.052.2
DOI https://doi.org/10.32782/tnv-tech.2023.4.9

SELECTION OF A COMPUTATIONAL PROCESS MODELING TOOL
FOR IMPROVING SOFTWARE QUALITY

Paulin O. M. — Doctor of Technical Sciences,

Associate Professor at the Department of Software Engineering
National University "Odesa Polytechnic”

ORCID ID: 0000-0002-2210-8317

Nikitchenko M. I. — Postgraduate Student
National University "Odesa Polytechnic"
ORCID ID: 0009-0007-9560-7057

A pressing problem in the IT sector is obtaining software products of proper quality. Sofiware
modeling tools play an important role in solving this problem. The most widespread tools are
the following: technologies for designing software products based on automated models built on
finite state machines (FSMs), Petri nets, and the unified modeling language (UML).

The aim of this paper is to improve the quality of software by applying the best of these tools
at an early stage of software design.

The paper reviews and analyzes modern means (approaches, methods and tools) for modeling
software with the aim of improving its quality, analyzing 30 sources over the past 25 years. It is
shown that over the years, the scope of applications of these tools has expanded, but nothing new
has emerged in theoretical terms. The above-mentioned tools are compared with each other by
the criterion of the greatest expressive power of the language describing the modeling process.
1t is shown that Petri nets (PNs) have the greatest expressive power. At the same time, we propose
to use PNNs at the beginning of the design of the sofiware, i.e., at the stage of algorithmization
(development of the computational process). This avoids many errors that can be eliminated at the
stage of program debugging only by trial and error, which greatly lengthens the debugging process.

To demonstrate the capabilities of the tools under consideration, each of them builds its own
model of the same insertion sorting process.

Key words: sofiware product, state machine model, FA technology, SWITCH technology,
Petri net, Unified Modeling Language, review, analysis, selection criterion, expressive power,
process modeling language, algorithmization, computational process, trial and error method,
program debugging, insertion sort.

Ilaynin O. M., Hikimuenxo M. 1. Bubip 3aco6y mooentoeannus o0uuciioeaibHux npoyecie
014 ni0GUWEHNA AKOCMI NPOZPAMHO20 3a0e3neUents

Axmyanvnoio npobremoro y cepi IT € ompumanns npoepamuux npodykmie (T1I1) nanesrc-
Hol sikocmi. Baowcnugy ponv eupiwienni yiei npobremu eparoms iHCMPYMEHMU MOOEIO8AHHS
III1. Hatibinbuwe nowuperus ompumand maxi incmpymenmu.: mexnonoeii npoexkmyeanns I111 na
OCHOBI asmomamuux mooeneil, nodyoosanux Ha Kinyesux asmomamax (KA), mepesxci [lempi ma
yHigixosana mosa mooenoeanns (UML).

Memoro danoi € niosuwjenns axocmi I111 3a paxyHoK 3aCmMocy8aHHs HAUKPAWO20 31 3240AHUX
IHCmpymenmie na pannbomy emani npoexmyeanns 1111.

Y pobomi nposooumuca 0210 ma ananiz cyvacHux 3acodie (nioxodis, memoodie ma iHcmpy-
menmis), mooenioganns Il 3 memoio nidguuyenHs 1020 AKOCMI, NPU YbOMY AHATIZVIOMbCA
30 dorcepen 3a ocmanni 25 poxie. Ilokasyemucs, wo 3a yi poxu cghepa 000amkie yux incmpymeH-
mMig POUWUPUNACS, NPOMe 8 MEeOPEeMUYHOMY NIAHI HOB020 HIY020 He 3'Aeunocs. 3zadami euuje
iHCMpYMeHmu NopieHIOIMbCA MidC COD0K0 3a Kpumepiem HaAubiIbwoi 6UpasHoi NOMYHCHOCMI
Mo8u onucy npoyecy mooenioganns. Ilokazyemuvcs, wo HAUOIILULIOIO BUPAZHOIO NOMYACHICTIIO
matoms mepeoxci Ilempi (MII). YV moii camuii wac namu npononyemuca gukopucmosgysamu MIT
Ha nouamxy npoexmyganus 111, mobmo. na emani ancopummizayii (po3podKu 064UCII08ANb-
Hozo npoyecy — OIl). Lle 003601s5€ yHUKHYmMU 6€31i4i NOMUNIOK, SKi YCY8aAIOMbCA HA emani Hala-
2000ICEHHS NPOZPAM MITLKU MEMOOOM NPoO i NOMULOK, WO CUTLHO NOO0BICYE NpOYeC HANA-
2000icenHsl.

| TaBpiticeknit HaykoBui BicHHK Ne 4

70|

Jna Ooemoncmpayii mosicrueocmeti pO3NAHYMUX THCMPYMEHMIB Ol KOWCHO20 3 HUX
6yodyembest €803 Mooenb 00H020 I moeo dc OI1 copmyeans 6cmagkamu.

Knrwwuosi cnosa: npocpammuuil npodykm, asmomamua modens, KA-mexwnonozcis, SWITCH-
mexnono2is, mepexca Ilempi, ynighixosana mosa MoOento8anHsi, 0250, AHANi3, Kpumepiti subopy,
BUPA3HA NOMYIICHICTb, MOBA ORNUCY NPOYECY MOOENI0BAHMNS, ANCOPUMMI3AYIs, OOUUCTIOBANLHULL
npoyec, Memoo npod ma NOMUNOK, HAAA200ICEHHS NPOSPAMU, COPHIYBAHHS 6CMABKAMUL.

Introduction. Development and implementation of quality software products (SP)
becomes a key success factor for enterprises and organizations. However, the increas-
ing complexity of software products and intensification of their development lead to
the growing number of errors in programs and significantly increase the time of their
debugging.

The quality of software and software in general is defined and regulated by
ISO 12207, ISO 9000, CMM and other standards [1], which provide systematization
and unification of quality criteria. These standards help developers and customers to
evaluate and control the quality of software at different stages of its development and
operation. The development of quality PP and software in general is very topical. This
paper reviews and analyzes modern sources to select the best tool for software qual-
ity improvement. The most common tools are considered: finite automaton (FA) based
models (Harel state diagrams [2] and SWITCH-technology [3]), Petri nets [4], Unified
Modeling Language (UML) [5]. Each of these tools and their clones has its own advan-
tages and disadvantages.

The aim of the work is to improve the quality of the software in general by choosing
the best of the above mentioned tools and moving to the earliest stage of the software
development — the stage of algorithmization.

In order to achieve this goal, the following objectives are addressed:

e review of sources on the above instruments;

 analysis of these tools and selection of the best of them according to the criterion
of maximum expressive power of the language of description of modeling processes;

* Demonstration of the tools' operation using the example of the computational
process of sorting by inserts and comparison of their capabilities.

Main part. Let us consider the above-mentioned directions of software quality
improvement, namely: the use of automata models, Petri nets, UML.

1. Automata model. The automatamodelisrepresented by two approaches: Harel state
diagrams [2] and the SWITCH technique [3]. The common feature of these approaches
is the use of the finite automaton (FA) model, but there are significant differences: the
first approach uses transition diagrams, while the second uses state diagrams. In addi-
tion, the authors have different stages of program construction: the first approach uses
the stages from algorithmization to program writing and maintenance, while the second
approach uses the stages of program verification and debugging. Let us further note that
the use of the switch construct allows structuring and modifying programs and ensur-
ing their isomorphism (pictorial equivalence) with the specification (transition graph).

The theory of finite automata as well as their varieties is presented in [6]. A finite
automaton is a mathematical model of a discrete control process (transformation of dis-
crete information); the most common finite automata are Mealy and Moore automata.
The state of an automaton is a set of values of the automaton's memory elements; the
current set represents some prehistory of the automaton's behavior as a result of succes-
sive exposure to input symbols. Automata have the ability to retain the previous state, so
they are called automata with memory. An automaton without memory is called a trivial
automaton or a combinational circuit.

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

|71

Literature analysis of automata models. A review of research conducted over the
last 25 years is presented, showcasing a diverse range of approaches to the utilization of
automata models for addressing complex problems across various domains. The anal-
ysis consists of examining the main concepts, methods and applications of automata
models in various fields.

The paper [7] describes a tool for creating and testing deterministic FAs with a
graphical interface. This tool allows users to create automata and test input strings in
real time.

The article [8] is devoted to the construction of a neural network with a minimum
number of neurons, which is necessary for modeling any FA with m states; the lower
and upper bounds of this minimum number are determined and found to be linearly
dependent on m under certain constraints.

The paper [9] considers FAs that are equivalent to right-linear context-free gram-
mars and represent the lowest level in Chomsky's hierarchy. Standard automata prob-
lems (emptiness, universality, equivalence, etc.) are discussed. The paper deals with the
issues of descriptive and computational complexity of FAs, presenting an overview of
the main ideas and the general picture in this area.

The paper [10] considers the problem of automatic correction of spelling errors in
text during machine translation and information retrieval based on FA. The correction
method is language-independent and requires only a dictionary and text data to build a
language model.

The paper [11] discusses the use of FA in parallel computing, especially in the con-
text of multicore processors. A new kind of automaton called a Simultant Finite Autom-
aton (SFA) is presented, which is designed with efficient parallel processing in mind. A
regular expression matching tool based on the SFA was created, which in typical cases
achieved significant speedup (by a factor of 10 or more) on a computer with two six-
Core processors.

Summary on the conducted analysis of automata models. Automata models are a
powerful tool for modeling and analyzing programs and their systems in order to write
high-quality SPs. Different approaches to the implementation of FAs provide differ-
ent advantages for designing software systems, allowing you to choose an approach
depending on the type of task. Modern graphical interfaces facilitate work with FA and
speed up the analysis of SPs.

Note the proposal to use neural networks for modeling the FA itself. The properties
and complexity of FA are still discussed. An interesting application is the task of cor-
recting spelling errors in texts using FA. A theoretical novelty is proposed, a new kind
of automaton called a "simultaneous finite automaton" (SFA), which is designed with
efficient parallel data processing in mind.

Example. Let’s consider the representation of the insertion sorting program [6] by a
finite automaton. The initial array contains n elements numbered from 0. Let us distin-
guish the operators of the program by dividing them into two groups: unconditional X
and conditional Y. The lists of operators are given in Table 1; the content of each oper-
ator is also given here.

According to the program [12] and in accordance with the notations (Table 1), the
graph-scheme of the automaton (fig. 1a), or, more precisely, its operational component,
is constructed. The operators of input of the initial array and output of the sorted array
are subroutines and are not considered in detail.

For complete construction of the automaton it is necessary to construct its control
component. For this purpose, we can use Baranov's method [6] of constructing a control

TaBpiticeknit HaykoBui BicHHK Ne 4

n |

Table 1
Operators and their contents

Oneparop

Conep:xanue oneparopa

Input of array A (numbering of elements — from zero)

S]

Enter the number n of elements of array A

w

i:= 1 — initial value of the external loop parameter

IS

key := arr[i] — auxiliary variable

o

j:=i-1 — count, inner loop

o

arr[j+1] := arr[j] — element shift

<

j =]j-1 —initial value of the inner loop parameter

oo

arr[j+1] := key — insert element to the appropriate place

o

i:=i+1 — count, outer loop

R A A A A

S

Output sorted array A'

Checking the condition i <n-1 — end of the outer loop

> | 4

S

Checking the condition j>0 & arr[j] > key — end of inner loop

automaton, which contains the following stages: construction of the graph-scheme of
the algorithm (GSA); markup of the GSA with state symbols; construction of the autom-
aton graph. In turn, the graph of the automaton contains several sub-stages, including:
construction of the transition table; minimization of the automaton, etc.

In this case GSA is interpreted as Moore's automaton, i.e. its vertices are marked
with state symbols. Fig. 1b shows the graph of Moore's automaton constructed by the
GSA of sorting by inserts.

a1

Y, Y, (a2
[

1
RN (3
1
a3
X

%1
Yy |ag | Yy |as Yo |31 1
| [‘T‘ a, L
END)a
Y5 |ag (_ED)a, Y |ag
u]
1
as| Yy || Ye (37 a b
P]

Fig. 1. Algorithm for sorting by inserts:
a — marked graph diagram; b — transition diagram

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

|73

Here we cut short the process of synthesizing a control automaton, since it is a sepa-
rate complex task. However, for evaluating the expressiveness of the language of graph
schemes, it is quite enough.

2. Petri net. A Petri net (PN) [4] is a bipartite graph that includes two types of
elements: positions p and transitions t; respectively, there are 2 types of links between
them: p—t and t—p.

Positions denote conditions that allow an action to be performed or an event to occur
when a chip is present in a position. Transitions denote actions/events that change the
state of the system, with the chip moving to the position associated with the transition,
which means the formation of a new condition. For a transition to be executed, all posi-
tions that have connections to this transition must be active, i.e. have a token each.
A scenario is the execution of certain actions (in the general case — the occurrence of
events) in the presence of necessary conditions.

Note the important rule: transitions and positions alternate.

In general, each element (position and transition) of an PN can have several input
and output links, but there are simplified PNs in which restrictions are imposed on the
number of inputs/outputs.

Livability is a property of a Petri net which means that the system does not get stuck
in an endless loop of performing the same transitions, but is operational.

Petri nets are used to represent and analyze dynamic systems and to model various
processes, such as business processes, manufacturing processes, or the processes of
interaction between the components of a SP. They help to understand how a system
works, identify problems and improve its performance.

Literature analysis of PN. In the last 20-25 years, serious attention of specialists
has been paid to both conventional [14—17, 19-21] and colored PNs (CPNs) [13; 18].
The publications consider various areas of PN applications: modeling of dynamic sys-
tems on the basis of "classical" PN and its derived models [14]; verification of safe-
ty-critical systems [20] and software systems, e.g., firmware for a robot [16]; analysis
and modification of logic for multi-agent systems [21]; design/management of construc-
tion projects [17]; identification of partially observable systems of discrete events [19].
The paper [18] attempts to illustrate many aspects of software development, to point out
some aspects of Petri nets that have been used or can be used to solve software develop-
ment problems, and to identify new software development problems that can be solved
with the help of PN modeling results.

Some approaches to the use of PN are also considered. The paper [22] provides a
comparative analysis of the methods, focusing on the creation of executable models of
software architectures and identifying research perspectives in this area. The article [23]
describes the application of PNs to verify the integrity of rule-based systems using their
structural properties. In [24] a combined approach combining WF-networks and PNs for
modeling the dynamics of software systems is investigated.

Summary of the analysis conducted on Petri nets. An overview of PNs and their
diverse applications, which include systems modeling, project management, software
development, and other areas, is provided. Approaches to using PNs, such as creating
executable software models and checking the integrity of systems, as well as tools that
use PNs to manage hybrid systems, are reviewed.

So, PNs are a powerful and flexible tool for analyzing and modeling dynamical sys-
tems, and their applications continue to expand.

Example. Let's consider modeling of the algorithm of sorting by simple insertions
with the help of SP. The PN is shown in fig. 2. Table 2 describes positions and Table 3
describes transitions.

TaBpiticeknit HaykoBui BicHHK Ne 4

% |

Fig. 2. Petri net for the algorithm of sorting by simple insertions

Note that the positions are combined (Table 3), which is determined by the need to
alternate between positions and transitions.

Table 2 Table 3
Positions and their meanings Transitions and their meanings
Position Significance Transition Significance

P, Beginning t, input A, n; i:=2
p, i<n t, output A’
p, The end t, key:=ai; j:=i—1
p j20 & arr[j] > key t, arr[j+1] == arr[j]; j:=j-1

t, arr[j+1] = key; i:=i1+1

To model this SP, scenarios have been developed that cover all possible chip move-
ment paths; in the initial state, the chip is in position p . Near each position, except the
start and end positions, are placed values (0 and 1) that define specific paths of the chip's
movement. The scenarios are as follows: 1) p,, t,, Py, t,..52) Py £, Pys s Do £ Py B -2
3) Pyt Py> b Pys b Py 1, -

3. Unified Modeling Language. UML [5] is a standard notational language for vis-
ualization, design, documentation and specification of software systems and other com-
plex systems. UML provides versatile tools for describing various aspects of a system,
including its structure, functionality, behavior, and interaction with the environment.

UML was developed to provide a common and understandable way of communica-
tion between developers, analysts, designers, and others involved in the development of
software and information systems. It provides graphical symbols and rules for creating
diagrams that allow for modeling a variety of aspects of a system.

The main types of UML diagrams include class diagrams, sequence diagrams, state
diagrams, and activity diagrams. Each of these diagrams aims to visualize specific
aspects of a system and helps developers to better understand its structure and func-
tioning.

Below we will review and analyze articles and other sources of information that
contain one or another feature of UML.

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

|75

Review and analysis of literature sources on UML. Initially, we should pay atten-
tion to the book [5], which provides the basics of UML in a two-color format with exam-
ples of applications in different domains. It includes an overview of UML and a gradual
introduction to the language, providing examples of its application in different domains.
The content has been updated to match UML 2.0, including new features, interfaces,
and changes to diagrams.

The papers presented below discuss applications of UML diagrams in software engi-
neering with a focus on diagram consistency. UML consistency management is dis-
cussed in [25] with parameter-based classification of methods and comparison of meth-
ods to identify current trends and issues. The literature review in [26] on the use of UML
diagrams shows their applicability for design and modeling, with class diagrams prov-
ing to be the most common. The paper [27] presents a systematic corpus of 119 con-
sistency rules useful in UML-based software development. In [28], a semantic conflict
detection method for UML class diagrams is proposed.

Insertion Sort Algorithm

User SortingComponent

Start sorting

Y

Initialize array {12, 11, 13, 5,6}

U

Calculate array length n

I

loo [forifrom 1 to n-1]
Store arr{i] as key

i

Store i-1 as |

i

leo [while j >= 0 and arr[j] > key]
Shift arr{j] to arrj+1]

il

Decrement j

I

Place key at arr{j+1]

I

_ Sorted array {5, 6, 11, 12, 13}

User SortingComponent

Fig. 3. Algorithm of sorting by simple inserts using UML

| TaBpiticeknit HaykoBui BicHHK Ne 4

76|

Next, approaches to the use of UML are analyzed. In [29], the authors describe
consistency rules between an action diagram and a class diagram, translating them into
logical predicates and applying them to a case study example. In [30], the authors pres-
ent 11 consistency rules for model checking between the most commonly used UML
diagram types. In [31], the authors propose an automatic approach for analyzing UML-
based designs using logical reasoning, allowing hundreds of online model repository
designs to be validated.

Summary of the UML analysis performed. A review of the literature on the appli-
cation of UML in software engineering has been conducted. The focus is on the use of
logical methods for consistency and efficient analysis of UML models, and consistency
rules and techniques for managing them are discussed. The articles provide a clear intro-
duction to object-oriented analysis and design using UML. These resources are valuable
for both novices and experienced software engineers, helping them to improve their
modeling and software development skills in the context of UML.

Example. Let's consider a program of sorting by simple inserts [12] and describe it
using UML. Let's choose the most appropriate diagram — the sequence diagram, which
will describe each step of the program execution (Fig. 3).

Summary and conclusions. The most widespread tools of software modeling to
improve its quality are: automata model in two variants proposed by Harel and Sha-
lyto, Petri nets, UML. All the tools, except SWITCH technology, are used in software
modeling and only in SWITCH technology modeling is carried out at the stage of algo-
rithmization. And only the tool using switch program design is brought to the level
of technology, but its application area is embedded tools intended for automation of
industrial objects.

As the review has shown, the latest research in the field of automata models is devoted
only to 5 articles, in the field of Petri nets — 13 articles, in the field of UML — 7 arti-
cles. It follows that the interest to automata models is decreasing. Petri nets are of the
greatest interest for researchers. We consider UML as a tool to be poorly developed, as
evidenced by the presence of 14 types of diagrams and 119 rules for their coordination.

Our approach coincides with the approach in SWITCH-technology — we believe that
verification and debugging of a program should be carried out at the earliest stage of its
development, i.e. at the stage of algorithmization. Further we believe that Petri nets pos-
sess the greatest expressive power of the language of description of modeling processes.

So, we consider the proposed approach to be the best. This conclusion is confirmed
by modeling the sorting process by inserts for all four tools.

BIBLIOGRAPHY:

1. "ISO/IEC/IEEE International Standard — Systems and software engineering --
Software life cycle processes," in ISO/IEC/IEEE 12207:2017(E) First edition 2017-11,
vol., no., pp.1-157, 15 Nov. 2017, doi: 10.1109/IEEESTD.2017.8100771.

2. Harel D. Modeling reactive systems with statecharts: The statemate approach.
New York : McGraw-Hill, 1998. 258 p.

3. Shalyto A. Software automaton design: Algorithmization and programming
of problems of logical control. Journal of Computer and Systems Sciences International.
2000.

4. Radford P. Petri Net Theory and the Modeling of Systems. The Computer Journal.
1982. Vol. 25, Ne 1. P. 129. URL: https://doi.org/10.1093/comjnl/25.1.129.

5. Booch G. The unified modeling language user guide. Second ed. Upper Saddle
River, NJ : Addison-Wesley, 2005. 475 p.

Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

|77

6. Baranov S. Automata. Logic Synthesis for Control Automata. Boston, MA, 1994.
P. 1-66. URL.: https://doi.org/10.1007/978-1-4615-2692-6 1.

7. Simulation and Testing of Deterministic Finite Automata Machine / K. B. Vaya-
dande et al. International Journal of Computer Sciences and Engineering. 2022. Vol. 10,
no. 1. P. 13—17. URL: https://doi.org/10.26438/ijcse/v10i1.1317.

8. Alon N., Dewdney A. K., Ott T. J. Efficient simulation of finite automata by neural
nets. Journal of the ACM (JACM). 1991. Vol. 38, Ne 2. P. 495-514. URL.: https://doi.
org/10.1145/103516.103523.

9. Holzer M., Kutrib M. Descriptional and computational complexity of finite autom-
ata—A survey. Information and Computation. 2011. Vol. 209, Ne 3. P. 456—470. URL:
https://doi.org/10.1016/5.ic.2010.11.013.

10. Izakovi¢ L. Using Finite-state Automata for Text Lexicons Building. Glottothe-
ory. 2008. Vol. 1, Ne 1. URL: https://doi.org/10.1515/glot-2008-0003.

11. Sinya R., Matsuzaki K., Sassa M. Simultaneous Finite Automata: An Effi-
cient Data-Parallel Model for Regular Expression Matching. 2013 42nd International
Conference on Parallel Processing (ICPP), Lyon, France, 1-4 October 2013. 2013.
URL.: https://doi.org/10.1109/icpp.2013.31.

12. Introduction to Algorithms / V. J. Rayward-Smith et al. The Journal of the
Operational Research Society. 1991. Vol. 42, no. 9. P. 816. URL: https://doi.org/
10.2307/2583667.

13. Kristensen L. M., Simonsen K. I. F. Applications of Coloured Petri Nets for
Functional Validation of Protocol Designs. Transactions on Petri Nets and Other Mod-
els of Concurrency VII. Berlin, Heidelberg, 2013. P. 56—-115. URL: https://doi.org/
10.1007/978-3-642-38143-0 3.

14. Valk R. Petri Nets as Token Objects. Application and Theory of Petri Nets 1998.
Berlin, Heidelberg, 1998. P. 1-24. URL: https://doi.org/10.1007/3-540-69108-1 1.

15. David R., Alla H. Petri nets for modeling of dynamic systems. Automatica. 1994.
Vol. 30, Ne 2. P. 175-202. URL.: https://doi.org/10.1016/0005-1098(94)90024-8.

16. Nandanwar M. Formal Verification with Petri Nets. TU Kaiserslautern — Com-
puter Science — Embedded Systems Group: Welcome! URL: https://es.cs.rptu.de/publi-
cations/datarsg/Nand22.pdf (date of access: 15.08.2023).

17. Lin C.-P., Dai H.-L. Applying Petri Nets on Project Management. Universal Jour-
nal of Mechanical Engineering. 2014. Vol. 2, Ne 8. P. 249-255. URL.: https://doi.org/
10.13189/ujme.2014.020801.

18. Kristensen L. M., Jorgensen J. B., Jensen K. Application of Coloured Petri
Nets in System Development. SpringerLink. URL: https:/link.springer.com/chap-
ter/10.1007/978-3-540-27755-2_18.

19. Riera B. Identification of discrete event systems using ordinary Petri nets. Aca-
demia.edu — Share research. URL: https://www.academia.edu/ 64731436 /Identifica-
tion of discrete event systems using ordinary Petri nets.

20. Integrated formal verification of safety-critical software / N. Ge et al. International
Journal on Software Tools for Technology Transfer. 2017. Vol. 20, no. 4. P. 423-440.
URL: https://doi.org/10.1007/s10009-017-0475-0.

21. Petri net and rewriting logic based formal analysis of multi-agent based safe-
ty-critical systems / A. Boucherit et al. Multiagent and Grid Systems. 2020. Vol. 16, no.
1. P. 47—66. URL: https://doi.org/10.3233/mgs-200320.

22. Aliee F. S. A Comparison of Petri Net Based Approaches Used for Specifying
the Executable Model of Software Architecture. ResearchGate. URL: https:/www.
researchgate.net/publication/221615992 A Comparison_of Petri Net Based
Approaches Used for Specifying the Executable Model of Software Architecture.

23. Agarwal R., Tanniru M. A Petri-Net based approach for verifying the integrity of
production systems International Journal of Man-Machine Studies. 1992. Vol. 36, Ne 3.
URL.: https://doi.org/10.1016/0020-7373(92)90043-k.

https://www.academia.edu/ 64731436 /Identification_of_discrete_event_
https://www.academia.edu/ 64731436 /Identification_of_discrete_event_

| TaBpiticeknit HaykoBui BicHHK Ne 4

78|

24. Suprunenko O. O. COMBINED APPROACH TO SIMULATION MODELING
OF THE DYNAMICS OF SOFTWARE SYSTEMS BASED ON INTERPRETATIONS
OF PETRI NETS. KPI Science News. 2019. Ne 5-6. P. 43-53. URL.: https://doi.org/
10.20535/kpi-sn.2019.5-6.174596.

25. Sulaiman N., Syed Ahmad S. S., Ahmad S. Logical Approach: Consistency
Rules between Activity Diagram and Class Diagram. International Journal on Advanced
Science, Engineering and Information Technology. 2019. Vol. 9, Ne 2. P. 552. URL.:
https://doi.org/10.18517/ijaseit.9.1.7581.

26. Abdulsahib M. A methods of ensuring consistency between UML Diagrams.
ResearchGate. URL:https://www.researchgate.net/publication/326901133 A methods_
of ensuring_consistency between UML Diagrams.

27. Khan A. H., Porres 1. Consistency of UML class, object and statechart diagrams
using ontology reasoners. Journal of Visual Languages & Computing. 2015. Vol. 26.
P. 42—65. URL.: https://doi.org/10.1016/j.jvlc.2014.11.006.

28. UML models consistency management: Guidelines for software quality manager /
R. S. Bashir et al. International Journal of Information Management. 2016. Vol. 36,
no. 6. P. 883-899. URL.: https://doi.org/10.1016/j.ijinfomgt.2016.05.024.

29. UML Diagrams in Software Engineering Research: A Systematic Literature
Review / H. Kog et al. Proceedings. 2021. Vol. 74, no. 1. P. 13. URL: https://doi.org/
10.3390/proceedings2021074013.

30. A systematic identification of consistency rules for UML diagrams /
D. Torre et al. Journal of Systems and Software. 2018. Vol. 144. P. 121-142.
URL.: https://doi.org/10.1016/].jss.2018.06.029.

31. Costa V., Monteiro R. Detecting Semantic Equivalence in UML Class Diagrams.
ResearchGate. URL: https://www.researchgate.net/publication/ 289465971 Detecting
semantic_equivalence_in UML class_diagrams.

https://www.researchgate.net/publication/
https://www.researchgate.net/publication/

