Komrr’rorepHi Hayku Ta iH(opmMamiiiai TexHomorii |

|45

UDC 004.021
DOI https://doi.org/10.32782/tnv-tech.2023.6.6

CONCEPT OF BUILDING A LIBRARY OF TASKS AND SOLUTIONS,
PART 2: SIMPLE SORTING

Paulin O. M. — Doctor of Technical Sciences,

Associate Professor at the Department of Software Engineering
National University “Odesa Polytechnic”

ORCID ID: 0000-0002-2210-8317

Komleva N. O. — Doctor in Engineering, Associate Professor,
Head at the Department of Software Engineering

National University “Odesa Polytechnic”

ORCID ID: 0000-0001-9627-8530

Nikitchenko M. I. — Graduate Student
National University “Odesa Polytechnic”
ORCID ID: 0009-0007-9560-7057

This paper is a continuation of the article "CONCEPT OF BUILDING A LIBRARY OF TASKS
AND SOLUTIONS" [1], which is devoted to the concept of building a library of common problems
and their solutions in the form of computational processes and macro operations, as well as
their models based on Petri nets. The library is a tool for collecting and systematizing various
problems, their solutions, and models. The numbering of tasks and solutions is introduced.

It is based on a tree structure that is convenient for both developers and practitioners in
the field of computer science. In the previous paper, special attention was paid to the architecture
and structure of the library, which is a tree whose nodes store knowledge about specific problems,
methods of solving them, and relevant computing processes, which provides a deep understanding
of the characteristics of the problem and its solution.

In the previous article, we mentioned the division of the library into an open part accessible
to the user and a closed part that is under the control of the developer.

This article describes how to fill the library with two tasks: simple selection sorting and simple
exchange. Each task is presented with a detailed solution containing: a task model, a solution
method, a computational process (CP) in the form of a verbal description of the algorithm,
an algorithm diagram, a list of macro operations, a CP model in the form of a Petri net with
a description of the network elements and scenarios for its verification.

To maintain the style of presentation of the problem solution, the article is also supplemented
with inserts that lack information for sorting: the problem model and the method of its solution.
In addition, the Sorting node of the library contains theoretical information about sorting: what
is sorting, types of sorting, their features, and for simple sortings, a table of quality assessment
of the sorting process.

Key words: library of problems and solutions, numbering, sorting by simple selection
and exchange, problem model, solution method, verbal description of the algorithm, algorithm
diagram, network model of problem solving, macro operation.

Ilaynin O. M., Komnesa H. O., Hikimuenxo M. I. Konyenuia nodyooeu bioniomexu 3aoau
ma piwiens, yacmuna 2: npocmi COpmy6anHs

15 poboma € npoooexcennsim cmammi "CONCEPT OF BUILDING A LIBRARY OF TASKS
AND SOLUTIONS" [1], npucesaueniti konyenyii nobyoosu Oibniomexu nowupenux 3a0ay ma
IXHIX p036°A3Ki6 y 8USTAT OOUUCTIOBATLHUX NPOYECI8 | MAKPOONepayitl, a Makoxic iXHix mooeneti
Ha ocHosi mepedic Ilempi. Bibniomexa € incmpymenmom 05t 300py ma cucmemamu3ayii piznoma-
HIMHUX 3a0a4, IXHIX p036 'a3Ki6 | Mooenell. Beooumvcs Hymepayis 3a0ay i piuiets.

Bona 6yoyemuvcsi na 0cHO8I 0epeeonodionol cmpykmypu, 3pyuHol K 015 pO3POOHUKIS, MAaK
i 0na npakmuxkie y eanysi komn tomepHux Hayk. Ocobnugy yeazy 6 nonepeowiu pobomi Oyno
npudineno apximexkmypi ma cmpykmypi 6ioniomexu, sika s811€ cobol0 0epeso, y 8Y3nax K020

| Taspiliceknit HaykoBHi BicHHK Ne 6

46|

30epiearomvcs 3HAHHA NPO KOHKPEmHI 3a0aui, Memoou iXHb0o20 po36’s3aHHA Ma GI0N0GIOHI
00YUCTI06ANBHI npoYect, Wo 3abe3nedye 2niuboke po3yMinHs 0cobausocmetl 3a0ayi ma it poss s-
3aHHA.

YV munynitc cmammi 3eadyeanocst npo nodin Oibriomexu Ha 8IOKpUMy 4acmuHy, OOCMYNHy
Kopucmysauesi, i 3aKkpumy 4acmumy, wo nepedysae y 8i0aHHI po3poOHUKA.

YV yitt cmammi onucyemuvca nanognenns 0ibriomexu 080Ma 3A60AHHAMU — COPMYBAHHAM
npocmum 8ubopom i npocmum oominom. Kodcry 3a0auy npedcmasiieHo 00OKIAOHUM PO38 SA3KOM,
wo micmums: Mooenb 3a0aui, Memoo po36 szanHs, obuuciosanvhul npoyec (OI) y éuensoi
CII0BECHO20 ONUCY ANCOPUMMY, CXEMY AN2OPUMMY, CRUCOK Makpoonepayit, mooeni OI1 y euenadi
mepedici [lempi 3 onucom enemenmis mepedxici ma cyeHapiis i sepughixayii.

Jna niompumru cmuio npedcmagieHts po3e a3aHHs 3a0adi Cmammio maxkoic 0ONOSHIOIONMb
6CMABKaAMU, AKUX OPAKYE IHPOpMayii Oisk COPMYBAHHIL: MOO@GILIIO 3a0ayi ma mMemooom ii pos3e s-
sanns. Kpim mozo, y eyzon "Copmyeanns" 6ioniomexu 6600amuvcs meopemudni i00MOCMI npo
COpMYBAHHA: WO MAKe COPMYBANHS, BUOU COPMYBAND, IXHI 0COOIUBOCMI, A MAKOJIC OISl NPOCMUX
copmyeanv — mabauys. OYiHOK AKOCMI Npoyecy Copmy6aHHs.

Kntouogi cnosa: 6ioniomexa 3a0au i po3a a3Kie, Hymepayis, cOpmy8ants npocmum 6ubOpom
i 0OMIHOM, MOOeNb 3a0aui, Memoo po38 I3AHHS, CIOBECHUL ONUC ANCOPUMMY, CXeMA AN20PUMMY,
Mepedicesa Mooenb po3e A3aHHA 3a0ayi, MaKpoonepayis.

Introduction. This study continues the theme started in the previous paper [1]. In
it, the foundations were laid for the creation of an extensive library designed to collect
and systematically tize a variety of problems and their solutions. The library covers
various aspects of problem solving: problem models, solution methods, computational
processes (CPs) and macrooperations (MOs), as well as their models based on Petri nets
(CP/MO models). The library is organized hierarchically in the form of a tree, the first
3 levels of which reproduce the classification of problems, and the next one — different
aspects of problem solving.

The relevance of the research is determined by the fact that in practice one often
spends many times more time on debugging programs than on writing them. To eliminate
this imbalance, we propose to shift the burden of the struggle for program quality to an
earlier stage of its life cycle — to the stage of building a high-quality CP. In this case, it
is proposed to model the CP on the basis of Petri net.

The aim of this study is to improve the quality of the CP by further developing and
deepening the functionality of the proposed library.

In order to achieve this goal, the following task was defined:

« Filling the library with two next sorting problems and their detailed solutions by
the methods of simple selection and simple exchange.

A detailed description of these solutions will provide a better understanding of the
solutions and efficient utilization of library resources.

Main part

Sorting task class

Sorting is the process of rearranging the elements of a one-dimensional array in a
certain order. The elements can be numbers, strings, database records, or any other data.
Depending on the specific requirements and characteristics of the data, there are many
different sorting methods. The numeric attributes of the elements to be sorted are called
keys.

Note. We will use the term element as the more common term, always referring to
a key.

Sorts can be divided into simple and efficient sorts, as well as sequential and parallel
sorts. All sorts implement the Compare-Replace operation for a pair of elements; the
difference between the sorting methods lies in the way the pairs are formed.

Simple sorts are easy to understand and implement [2]. They can be effective
for small amounts of data or when performance is not critical. The library includes:

Komrr’rorepHi Hayku Ta iH(opmMamiiiai TexHomorii |

|47

insertion sorting, selection sorting and exchange sorting. These are often used for
training purposes or when simplicity is more important than performance. Efficient
sorts usually provide good performance on large amounts of data. They can be more
complex to implement, but provide better performance in the average and worst case.
Shell sort, pyramidal sort, and fast sort. which have better asymptotic complexity will
be included in the library as efficient sorts. The listed sorts are sequential and only one
pair of elements is processed at each step of the CP. Parallel sorts are used to speed
up the sorting process of large amounts of data; boosting on multicore or distributed
systems. Among them we can mention bitonic sorting, as well as modifications for
merge sorting and fast sorting.

In this article, only simple sorts will be considered.

General description of simple sorts

The sorted sequence is divided into 2 subsequences: ready and input. We introduce
the basic notion of "boundary" separating the ready subsequence (RSS) and the input
subsequence (ISS). We consider the current state of the sorting process and specify the
new position of the boundary at the next step of the CP, as well as its initial position.

In the course of sorting by simple insertions, a matching location in the RSS is
sought for the current boundary element x. The pair of compared elements is (x, a,,).

In the case of sorting by simple selection, the current boundary element a, exchanges
places with the minimum element a,_of the ISS. The pair is (a,, a,).

In simple exchange sorting, the sequence is presented vertically, with the first
element placed at the top. The boundary is set between the 1st and 2nd elements. Nearby
elements are compared; they form a pair.

In order to build a convenient navigation through the library, we will introduce the
following numbering: Digit.Digit. Latin capital letter. Here the first digit means the class
of problems, the second digit means the subclass of problems, and the letter means the
solutions of problems.

We propose the following solution structure: a model of the problem, a method of its
solution, a verbal description of the algorithm\MO, a PN-model of the CP\PN.

1.1.A. The combinatorial subclass sorting problem by simple insertions.

A unified representation of the problem solution was proposed above, but the solution
file of this problem [1] lacks two solution components: problem model, solution method
and algorithm scheme (AS). Let us fill this gap.

Task model

The idea of solving the problem is to find a suitable place for inserting into the
current RSS an element of the current ISS located just outside the boundary on the right.
The idea is illustrated by the problem model presented in Fig. 1.

B m NB IB - initial boundary
o— Jl CB - current boundary

3 2; dy- 2585 +8;78; Ay - cAg NB - next boundary

ready subsequence input subsequence

Fig. 1. Model of the sorting problem by simple insertion method

Sorting method by simple insertion
0. The initial boundary is set to the 2nd element of the element sequence.

| Taspiliceknit HaykoBHi BicHHK Ne 6

48|

1. The element x=a, beyond the right border in the current ISS is placed in a suitable
place of the current RSS. This place is determined by the condition a,,sx<a, where j is
the number of the current element in the RSS.

2. The boundary between the RSS and the ISS is moved one position to the right.
Move to step 1.

The AS of this sorting is constructed by verbal description of the algorithm (VDA);
it is shown in Fig. 2.

/s5/

i=2
|

No
Yes
f=isl X = a;; Cutput
) ap=x arr. A’
[[
=il { The end }
>
Yes
o || shift
1=rl 1= 3 |:element 3
Yes
No
R . appropriate
I place
|

Fig. 2. AS of sorting by inserts

1.1.B. Sorting problem by simple selection method

Task model

Sequence elements are divided into RSS a,, a,, ..., a_, and ISS a, ..., a , which is
indicated in Fig. 3. The idea is then used: the first element in order from the ISS is
swapped with the smallest ISS element found, after which the boundary is shifted,
resulting in that element being in the RSS.

Method for solving the problem

0. The initial boundary is set to the 2nd element of the given sequence of elements.

1. Search for the minimum element in the current ISS and, if necessary, exchange it
with its 1st element.

2. Shift the boundary one position to the right. Move to step 1.

Data Structures:

A, A’ — sequences of elements given and sorted;

1, j — parameters of cycles, external and internal;

n is the number of keys in the sequence;

k is a special key (element).

Komrr’rorepHi Hayku Ta iH(opmMamiiiai TexHomorii |

|49

IB - initial boundary

. 1B CB,= m CB - current boundary

< NB - next boundary
2y @3-+ 3,32 V.4 -Em- a,

am - mmel
ready subsequence input subsequence

Fig. 3. Model of the sorting problem by simple selection method

A verbal description of the algorithm

1. Input the key sequence A; i := 1.

2. Check i <n? If YES, then set the values k :=1, j :=i+1 and go to step 3, otherwise
go to step. 6.

3. Find the smallest element in the input subsequence a,, ..., a_and assign k its index.
To do this, perform the following:

+ Browse all elements of the subsequence from a to a .

* Each element a, j=1i+1.n, is compared to an element a, .

 [Ifthe elementa > a, we assign the value j to k.

4. Increase the value of j by 1. If j <=n, go to step 3. Otherwise, check i # k? If YES,
then a. and a,_are swapped.

5.1:=1+ 1. Go to step 2.

6. Output of the sequence A’.

According to the VDA, an AS is constructed; it is shown in Fig. 4. Further, the full
PN-model for the CP of sorting by simple selection is constructed (Fig. 5). Here the
numbers 0 and 1 near the arc leaving the position denote: 1 — the process continues, 0 —
transition to an alternative process.

Tables 1 and 2 summarize the description and purpose of the components for this
PN model.

Fig. 4. AS for sorting by simple selection

Taspiliceknit HaykoBHi BicHHK Ne 6

P3

Fig. 5. PN-model of CP for sorting by simple selection

T10

Positions and their purpose

Positions Purposes
P, Beginning
P, i<n?
p, The end
P, j<=n?
P, k=1?
p a>a?
P)
p’ Z

Transitions and their purpose

Positions Purposes
t, Array input, i:= 1;
t, output A’
t, j=1 k:=+1
t', NOP
t' NOP
t', NOP
t, k=]
t Swap places a. and a,
t j=j+1
t, i=i+1

Table 1

Table 2

Komrr’rorepHi Hayku Ta iH(opmMamiiiai TexHomorii |

|51

Based on the structure of the PN, the following transition triggering scenarios can be
identified, covering all possible branches/loops of the structure. We have:

1) p0 — t0 - NOTpl — t2 — p3

2)pl —» tl - NOTp2 —» t3 - NOTp4 — t5 —» p6 - t9 —....

3)pl »tl > NOTp2 >3 > p4 > t6 - p6 —1t9 —....

4Hp2 > td - pS—t7T - p7 —tl10 —....

5)p2 —» t4 > NOTp5—t8 — p7 — t10 —....

1.1.C. Sorting problem by simple exchange

Task model
Fig. 6 shows the sequence elements, which are also divided into RSS @, @, ..., a,,
and ISS a, ..., a . Unlike the previous variant, here the sorting is performed from right

to left. And here the elements are compared in palrs (a anda_,thena anda_ ,etc.).
The smaller element is successively shifted until it is in place of a. Then the boundary
is shifted so that a, is in the RSS and the comparison process starts. again.

Emim:l IB - initial boundary

1B —\ m YTV TN CB - current boundary

a; a,-- -a-l NB - next boundary

- 1=

Q2] »++ 3323, 13n

ot

am - minel
ready subsequence input subsequence

Fig. 6. Model of the sorting problem by simple exchange method

Method for solving the problem

0. The initial boundary is set over the uppermost element of the sequence of
elements.

1. Pairs of neighboring elements are formed in the current input subsequence, starting
from the bottom; they swap places if necessary. The "lighter" elements "pop up" up to
the boundary.

2. Border moves down a position; move to step 1.

Data Structures:

A, A’ are sequences of keys given and sorted,;

1, j — parameters of cycles, external and internal;

n is the number of keys in the sequence;

A verbal description of the algorithm by a simple exchange

1. Input sequence A; set the value i := 2.

2. Check i >n. If NO, set j :=n and go to step 3, otherwise sorting is over.

3. Check j <i. If YES, then i :=i+1 and go to step 2.

4. Compare the values of a, and a, . If a, <a, we swap them. Decrease the value of
j=j—1, goto step. 3.

5. Output of the sequence A’.

For this algorithm, the AS is constructed according to its SOA (Fig. 7).

Below we consider a complete PN-model for CP sorting by simple exchange (Fig. 8),
constructed by AS. Here the numbers 0 and 1 near the arc leaving the position denote:
1 — the process continues, 0 — transition to an alternative process.

Table 3 and Table 4 summarize the description and purpose of the components for
this PN model.

| Taspiliceknit HaykoBHi BicHHK Ne 6

52 |
MNao
Yes
- C-utput =i
1= arr A !
—
Swap
aj, aj+1
I —
Fig. 7. AS for sorting by simple exchange
7 I T4 I
Y 1 1
()—>|_>(y_>|_—>(° H NG >| g)
PO TO P17 T P2 1 3 P4U T8 P5
A
— I

T2

O

Fig. 8. PN model of PN for sorting by simple exchange

Based on the structure of the PN, the following transition triggering scenarios can be
identified, covering all possible branches/loops of the structure. We have:

1)p0 —t0 — pl — 2 — p3

2)NOTpl —»tl - p2 —»t7 —...

3)p2 —»t3 > NOTp4d —» t5 > p5 —>t6 —...

Hp2 >3 >pd—>t4d—>pS—tb—...

Komrr’rorepHi Hayku Ta iH(opmMamiiiai TexHomorii |

| 53
Table 3
Positions and their purpose
Positions Purposes
P, Beginning
p, i>n?
p, The end
P, j<i?
pA ai+l < a|?
P, B
Table 4
Transitions and their purpose
Positions Purposes
t, Array input, i: =2
t, ji=n
t, Output A’
t' NOP
t, Swap places a. and a_
t' NOP
t, ji=j-1
t =i+l

Conclusion. In this paper we continue filling the library of problems and solutions
started in the previous article; two problems were added to the library: sorting by simple
selection and simple exchange. At the same time, an internal standard of the library was
formed to represent the solution of problems, which includes: the problem model, the
solution method, the CP in the form of a verbal description of the algorithm and MO, the
algorithm scheme, the CP and MO models in the form of a Petri net with a description of
the network elements, and scenarios for its verification. In accordance with this standard,
the description of the solution to the problem of sorting by simple inserts was adjusted.

The paper proposes a method of numbering problems and solutions.

The use of Petri nets to model CPs, together with detailed descriptions of problems
and solutions, has made the library not only a tool for storing data, but also a valuable
resource for analyzing and managing CPs. This approach enhances the quality of
programming and enriches learning and practice in computer science.

BIBLIOGRAPHY:

1. Maynin, O. M., Komnesa H.O., Hikituenko, M. 1. KOHLIEIILIA TTOBYJOBU
BIBJIIOTEKU 3AIAY TA PILUEHD // Taspiticoxuii naykosuii sicnux. Cepia: Texniuni
nayku. 2023. Ne. 5.

2. Wirth N. Algorithms & Data Structures. Pearson Education, Limited, 1986. 288 p.

REFERENCES:

1. Paulin, O. M., Komleva N.O., Nikitchenko, M. I. (2023) CONCEPT OF
BUILDING A LIBRARY OF TASKS AND SOLUTIONS // Taurida Scientific Herald.
Series: Technical Sciences. No. 5.

2. Wirth N. (1986) Algorithms & Data Structures. Pearson Education, Limited, 288 p.

