
15
Комп’ютерні науки та інформаційні технології

UDC 632:654.672
DOI https://doi.org/10.32782/tnv-tech.2024.4.2

APACHE WEB SERVER PERFORMANCE OPTIMIZATION

Antonenko A. V. – PhD in Technical Sciences, Associate Professor,
Associate Professor at the Department of Standardization and Certification of Agricultural
Products of the National University of Life and Environmental Sciences of Ukraine
ORCID ID: 0000-0001-9397-1209

Mishkur Yu. V. – Postgraduate Student at the Department of Computer Engineering
of the State University of Information and Communication Technologies
ORCID ID: 00009-0004-6807-6914

Solskyi D. Ya. – Postgraduate Student at the Department of Computer Engineering
of the State University of Information and Communication Technologies
ORCID ID: 0009-0005-0351-5987

Solobaiev S. H. – Postgraduate Student at the Department of Computer Engineering
of the State University of Information and Communication Technologies
ORCID ID: 0009-0008-6298-4777

Poduran D. V. – Master at the Department of Computer Engineering
of the State University of Information and Communication Technologies
ORCID ID: 0009-0005-4177-5456

Sarafaniuk R. O. – Master at the Department of Computer Engineering
of the State University of Information and Communication Technologies
ORCID ID: 0009-0000-5284-2910

This article explores approaches to online optimization of the Apache web server, focusing on the
MaxClients parameter. Using empirical and analytical methods, the researchers prove that MaxClients
has a large impact on response time, and recommend hill-climbing strategies to determine the optimal
value of MaxClients. The study includes the analysis of two optimizers using different approaches,
such as Newton’s method and fuzzy control, as well as heuristics based on the relationship between
resource utilization and response time. In general, online optimization techniques can reduce the
response time by a factor of 10 or more compared to the static default, although this may require
some trade-offs between different approaches. Investigating opportunities to improve the speed and
response time of the Apache web server through various techniques and settings such as optimizing
server settings, using caching, data compression, optimizing request routing, and others is really
important in today’s Internet environment. The purpose of the study is to improve the performance
and response speed of the Apache web server, which can be useful for developers and administrators
of web applications and services. The speed and response time of servers are important factors in
meeting user needs and achieving business goals of web applications and services. Since Apache is
one of the most widely used web servers in the world, optimizing Apache server response time is an
important task for many web development and administration professionals. This study examines
various approaches and techniques for optimizing the response time of the Apache web server,
including configuring server parameters, using caching, data compression, optimizing request
routing, and others. The results of the study can be useful for developers and administrators of web
applications and services that work with the Apache web server. Optimizing Apache server response
time can significantly improve the performance and efficiency of web applications and services,
which in turn can lead to user satisfaction and business goals.

Key words: Аpache web server, Apache MaxClients, Apache architecture, optimization, fuzzy
control, heuristics.

16
Таврійський науковий вісник № 4

Антоненко А. В., Мішкур Ю. В., Сольський Д. Я., Солобаєв С. Г., Подуран Д. В.,
Сарафанюк Р. О. Оптимізація продуктивності веб-сервера Apache

У цій статті досліджуються підходи до онлайн-оптимізації веб-сервер Apache, зосе-
реджуючись на параметрі MaxClients. З використанням емпіричних та аналітичних
методів дослідники доводять, що MaxClients має великий вплив на час відгуку, і рекомен-
дують використовувати стратегії для підняття на гору для визначення оптимального
значення MaxClients. Дослідження включає аналіз двох оптимізаторів, що використо-
вують різні підходи, такі як метод Ньютона і нечітке керування, а також евристику,
яка базується на зв’язку між використанням ресурсів та часом відгуку. Загалом, методи
онлайн-оптимізації дозволяють скоротити час відповіді у 10 або більше разів порівняно зі
статичним значенням за замовчуванням, хоча це може вимагати деяких компромісів між
різними підходами. Дослідження можливостей покращення швидкості та часу реакції
веб-сервера Apache за допомогою різноманітних технік і налаштувань, таких як опти-
мізація налаштувань сервера, використання кешування, стиснення даних, оптимізація
маршрутизації запитів та інших, дійсно має велике значення у сучасному Інтернет-се-
редовищі. Мета дослідження полягає в поліпшенні продуктивності та швидкості відпо-
віді веб-сервера Apache, що може бути корисним для розробників та адміністраторів
веб-додатків та сервісів. Швидкість та час відповіді серверів є важливими факторами
для задоволення потреб користувачів та досягнення бізнес-цілей веб-додатків та сервісів.
Оскільки Apache є одним з найпоширеніших веб-серверів у світі, оптимізація часу відпо-
віді сервера Apache є важливим завданням для багатьох фахівців у галузі веб-розробки та
адміністрування. В даному дослідженні розглянуті різні підходи та техніки для опти-
мізації часу відповіді Apache веб-сервера, включаючи налаштування параметрів сервера,
використання кешування, стиснення даних, оптимізацію маршрутизації запитів та інші.
Результати дослідження можуть бути корисними для розробників та адміністраторів
веб-додатків та сервісів, які працюють з Apache веб-сервером. Оптимізація часу відповіді
Apache серверу може суттєво покращити продуктивність та ефективність веб-додат-
ків та сервісів, що, в свою чергу, може призвести до задоволення користувачів та досяг-
нення бізнес-цілей.

Ключові слова: веб-сервер Apache, Apache MaxClients, архітектура Apache, оптиміза-
ція, нечіткий контроль, евристика.

Introduction. The problem is that the response time of the Apache Web server can
be quite high depending on the load and the number of requests coming to the server.
This can lead to a poor user experience and adversely affect the performance of the
website. Optimizing the response time of the Apache Web server can include various
strategies such as caching static files, adjusting the logging level, improving the pro-
cessing of requests using different algorithms, adjusting server configuration options,
and optimizing the database if it is used. The result of optimization can be a decrease in
server response time and an increase in site performance, which can positively affect the
user experience and site ranking in search engines.

The aim of the study. The goal of optimizing Apache web server response time is
to improve the performance and efficiency of web applications and services that use this
web server. To achieve this goal, various approaches and methods for optimizing the
response time of Apache web servers should be considered, such as server configura-
tion, use of caching, data compression, optimization of request routing, etc. Optimizing
the response time of the Apache server can significantly improve the performance and
efficiency of web applications and services, resulting in the satisfaction of user needs
and the achievement of business goals.

The objects of research for optimizing the response time of the Apache web server
are the web server itself, its configuration parameters and interaction between clients
and server applications. The study should cover web server settings such as network
settings, operating system configuration, server application settings, request processing,
and response sending.

The process by which the server responds to client requests and its parameters
are the subject of research in the work devoted to optimizing the response time of the

17
Комп’ютерні науки та інформаційні технології

Apache web server. Research tasks are request processing speed, response time, number
of requests per unit of time, number of simultaneous connections and other parameters
that can affect server response time.

Analysis of recent research and publications. With the proliferation of e-com-
merce systems, service quality, particularly response time, is attracting increasing
attention. One of the challenges in this context is adapting systems to changing work-
loads by optimizing them through online configuration. This article reviews the fol-
lowing approaches to online optimization on Apache web servers, with an emphasis
on methods that are less invasive and can be applied to a wide range of configurations
and systems.

Consider the Apache MaxClients parameter, which determines the number of
requests processed by the web server in parallel. Table 1 shows the average response
times measured with different configurations of MaxClients for different workloads.
The test environment used to collect this data will be described later in this section.

Table 1
Response time for various loads, sec.

MaxClients Workload
Dynamic Dynamic + Static

150 50
650 1 15
900 30 2

It is often found that the optimal value of MaxClients varies depending on the type of
pages visited by the site. Because real-world workloads can change rapidly, optimizing
these important parameters online can significantly improve them [1, 2].

This article describes a general approach to online optimization of the response time
of the widely used Apache web server. A related area of research is differentiated ser-
vices, which are aimed at achieving response time goals for different classes of tasks.
The authors use an analog-integral controller to adjust and differentiate the response
time. A multi-input multi-output controller scheme is used to regulate server CPU and
memory usage within a given QoS value, and an approach that combines queuing the-
ory and control theory to regulate response time is described. Unfortunately, the control
problem that this approach solves is very different from the optimization problem [3, 4].
Essentially, regulation (eg, providing response time targets for gold and silver services)
defines how to «cut the pie», and optimization (eg, minimizing response time for a
class of service) is what it does. Several studies have been conducted in the field of
optimization of online resources in computer systems. This study describes an Apache
implementation that manages web server resources based on profit maximization (e.g.,
response within 8 seconds to avoid pushing users away). Although the results are inter-
esting, this approach requires significant changes to Apache’s resource management
scheme. This approach considers benefit maximization in service level agreements for
web server farms, but in a way that is based on an accurate analytical model of the
managed system.

Presentation of the main research material. Recently, a fuzzy control approach
was proposed, which allows to minimize the response time by combining a feedback
control scheme with a qualitative analysis of the influence of configuration parameters
on QoS. Unfortunately, this approach has a long convergence time [6].

18
Таврійський науковий вісник № 4

Figure 1 shows our proposed architecture. The target system (e.g., Apache) provides
one or more configuration parameters (e.g., MaxClients) that are dynamically changed
by the optimizer to optimize the measured variable (e.g., response time). First, MaxCli-
ents is shown to have an ascending effect on response time, and therefore a hill-climbing
method can be used to determine the optimal value of MaxClients. Two hill-climbing
optimizers are studied, one based on Newton’s method and the other based on fuzzy
control.

Fig. 1. General architecture for online optimization. The target system is controlled

by configuration parameters that are dynamically changed by the optimizer in response
to changing workloads

The third method is a heuristic method that uses the observed relationship between
loading bottlenecks and minimizing response time. Newton’s method performs better
than Apache’s standard method, but gives inconsistent results due to different response
times. Fuzzy control is more reliable but converges slowly. Heuristics work well in our
prototype system, but are difficult to generalize because they require knowledge of bot-
tlenecks and the ability to measure resource usage [2].

Apache is typically structured as a collection of workers that process HTTP requests.
Our study uses version 1.3.19 where workers are processes, but we believe the basic
idea can be broadly applied.

The request flow in Apache is shown in Figure 2. The request enters the TCP accept
queue, where it waits for a worker. Workers process the request until it is completed,
after which they accept a new request. The number of worker processes is limited by the
MaxClients parameter [5].

Many conclusions in this article are based on the results of experiments. All experi-
ments were performed on a Pentium III 600 MHz server with 256 MB RAM and Apache
1.3.19 server software with Linux 2.4.7 on the same machine, connected to a 100 Mbps
LAN; used a synthetic workload generator running on the same machine. File size dis-
tribution is the same as in Webstone 2.5; static and dynamic loads were used. Requests
to dynamic pages were handled by CGI scripts in Webstone 2.5. More details are needed
to explain how the queries are generated.

Our workload model is presented in WAGON [9].
More details are needed to explain how to submit a request. Our workload model is

based on the WAGON model, which has been proven to be applicable to a wide range
of web requests. This model organizes the workload into sessions (which are a series
of user interactions). As shown in Figure 2, a session consists of several page requests.
The page contains a number of built-in objects whose parameters are determined by the
length of the packet. Thus, the load parameters are session arrival rate, session duration

19
Комп’ютерні науки та інформаційні технології

(number of clicks or page requests in a session), packet length (number of objects in a
packet), and reasoning time (time between successive clicks). Table 2 summarizes the
parameters used in this work and is based on data provided by a public website based on
a synthetic blog created using the WAGON model and using httperf to make HTTP/1.1
requests.[10, 11].

 Fig. 2. Apache architecture and session flow

Table 2
Workload parameters

Parameter Nome Distribution Parameters
Session Rate Exponential Mean = 0.1
Session Length Log Normal Mean = 8, Ꝺ = 3
Burst Length Gaussian Mean = 7, Ꝺ = 3
Think Time (s) Log Normal Mean = 30, Ꝺ = 30

The metric we decided to minimize is server-side response time. Measuring response
time on the client side is the most meaningful metric for users, but this information is
usually not available in real time on the web server. Also, while client-side response
times can be approximated from server-side measurements and TCP models, server-side
response times can only be verified [12].

Fig. 3. Elements of the WAGON workload model

(The solid and dashed lines indicate two sessions. The long arrow indicates the HTML text
of the Web page, while the short arrow indicates the request to the Web page object)

This article looks at server-side response time, namely page response time (RT). This
metric needs to be evaluated because page delivery may involve multiple requests. The
following formula is used for this:

20
Таврійський науковий вісник № 4

RT = AQT + BL × ST (1)
Accept Queue Time (AQT) comes from the Linux kernel and adds a tool to meas-

ure the average waiting time of connections entering the accept queue over a period of
time. Service Time (ST) is measured by measuring the first and last steps of Apache’s
request processing cycle (that is, when the request is received and when the response
is sent). The average number of embedded requests per page, also known as the packet
length, is denoted BL. It can be calculated as the number of requests handled by all
workers divided by the number of connections handled in the TCP host queue, because
HTTP/1.1 connection persistence means that an existing TCP connection remains open
between successive HTTP requests in a packet, only the first request must establish a
TCP connection and enter the TCP host queue. This leads to the above equation.

Figure 6 shows Apache experimental results with different MaxClients settings. The
circle shows the average response time, and the vertical line shows the root mean square
deviation. Notice that the circular line appears concave at the top of this curve. Also,
this curve shows that MaxClients has more than a 10x impact on response time for this
workload.

This concavity can be explained in terms of the Apache architecture: if the value
of MaxClients is too low, there will be a large delay due to waiting in the TCP receive
queue. In fact, the queue may overflow and requests may be rejected. On the other hand,
if the value of MaxClients is too large, resources will be overloaded, which also reduces
performance. In extreme cases, exceeding the process limit can lead to internal server
errors. The overall result of these factors is that the response time is an upward-con-
cave function of MaxClients. Essentially, a workflow can be thought of as the logical
resources required to process a request. However, this requires physical resources such
as CPU, memory, and I/O bandwidth.

Fig. 4. Impact of MaxClients on Response Time

Since we are interested in online optimization, we need to change MaxClients
dynamically. For this, a mechanism similar to Graceful Restart was implemented. This
mechanism reportedly allows changing MaxClients without stopping Apache. This

21
Комп’ютерні науки та інформаційні технології

requires an agent in the Apache system. This agent also provides tools such as CPU
usage, memory usage, and server-side response time.

Although this article focuses on MaxClients, we believe that the approach used is
more widely applicable. For example, we’re currently exploring KeepAliveTimeOut,
another Apache parameter that specifies the amount of time a session can remain inac-
tive when using a persistent connection. Other systems have configuration options sim-
ilar to MaxClients, such as the number of servlet threads or EJB threads on the applica-
tion server [13].

Online optimization describes how the response time can be minimized by dynam-
ically adapting MaxClients, assuming that the response time is concave to MaxCli-
ents. Several methods are considered, including Newton’s method, fuzzy control, and
heuristic methods. These methods are compared in terms of minimizing the response
time and speed of convergence to a fixed value. The first is desirable from the point
of view of improving the quality of service. The second is important for adaptation to
load changes. Both of the above approaches involve feedback. Therefore, MaxClients is
adjusted based on the observed impact on response time or other metrics. Alternatively,
you can use the direct feedback method, when the optimal value of MaxClients is cal-
culated based on the analytical model. This direct feedback method is attractive because
it avoids problems related to stability and speed of convergence. However, this method
requires an analytical model with input data that a) tracks the measured response time
and b) can be easily estimated. The model developed satisfies point (a) but not (b). For
example, the service speed µm depends on the number of servers, i.e. µm = f(m), but we
do not know this function. It is possible to develop a model that satisfies (a) and (b), but
in the absence of such a model we turn to a feedback approach [16, 17].

Fig. 5. Apache online optimization architecture using Newton’s method to dynamically

adjust MaxClients based on response time measurements

Figure 5 shows an architecture where Newton’s method is used to optimize when
browsing Apache online using dynamically adapting MaxClients [14]. Newton’s method
is a widely used optimization technique that uses the slope of minimizable functions
(eg, Figure 4) to estimate the value of MaxClients that minimizes the response time.
For example, if y is response time and x is MaxClients, you can use the approximation
y = f(x) ≈ a(x-x*)2+b. Newton’s method is represented by the next level.

 (2)

where xk is the value of x at a discrete moment in time k. Equation (3) starts with the
initial value x0 at k = 0.

Its slope (the second partial derivative f(x)) is calculated at the point xk; its negative
value indicates a steeper descent direction). The value (of the second partial derivative

22
Таврійський науковий вісник № 4

of f(x)) indicates the size of the update step; introducing second-order partial derivatives
eliminates the local linear search and can lead to faster convergence. However, this
algorithm is more sensitive to measurement noise.

Fuzzy control is another approach to online optimization. This study examines
exactly this approach. Figure 6 shows an architecture that uses fuzzy control to optimize
when browsing Apache online by dynamically adapting MaxClients. The fuzzy con-
troller uses changes in MaxClients and view time to dynamically optimize MaxClients.

Fig. 6. Apache online optimization architecture using Fuzzy Control to dynamically adjust

MaxClients based on changes in MaxClients and response time

The behavior of the fuzzy controller is governed by a set of IF-THEN rules. For
example, «IF the change in MaxClients is small and the change in response time is
small, THEN the next change in MaxClients is small.» The terms changein-MaxClients
and changein-response-time are linguistic variables and neglarge are linguistic values.
Linguistic changes are a natural way to deal with the uncertainty that creates probability
theory in the context of computer systems. Country linguistic variables in a form that
corresponds to the number of variables. Fuzzy control systems provide a method of
matching between numerical and linguistic changes (so-called fuzzy fuzzification and
unfolding). For more information on fuzzy control, see Unclear control [15, 18].

Fig. 7. Illustration of fuzzy rules

23
Комп’ютерні науки та інформаційні технології

Table 3
Unclear rules

Rule IF THEN
change in AND change in

Max Clients AND Response Time
change in

next Max Cleints
1 neglarge AND neglarge neglarge
2 neglarge AND poslarge poslarge
3 poslarge AND neglarge poslarge
4 poslarge AND poslarge poslarge

The considered optimization problem can be easily expressed in the form of fuzzy
rules. The rules in Table 3 are organized as follows (also shown in Figure 7, where the
dashed arrow indicates the precondition IF and the solid arrow indicates the subsequent
THEN part): the IF part shifts the position on the lookup time curve for the optimal value
of MaxClients. For example, Rule 4 considers the case where MaxClients increases,
which increases the browsing time. This means that you are to the right of the optimal
MaxClients value; the THEN part shows how you change MaxClients, where neglarge
is the decrease and poslarge is the increase. Rules 1 and 3 indicate the position where the
response time decreases as a result of the last MaxClients change in the right direction.
In contrast, rules 2 and 4 deal with situations where the response time has increased as a
result of the last operation, i.e. a «wrong operation»: the number of MaxClients changes
varies with the rate of convergence and the degree of steady-state oscillation.

Fig. 8. Measuring Apache for dynamic load

24
Таврійський науковий вісник № 4

Obviously, if the curve is steeper, then small changes in MaxClients are optimal. For
more gradual gradients, it is better to use large changes. Saturation-based optimization
heuristics are robust to noise and the specific functions being optimized, and are driven
by the pursuit of fast convergence. As MaxClients increase and CPU load is 100%,
the response time is minimized. This can be seen from the static and dynamic load
measurements in Figures 10 and 11, where the average queue time and service time
are measured for different values of MaxClients, and the browsing time is calculated
using level (1). CPU and memory usage were also measured to monitor system resource
usage. In Fig. 10 hours of viewing decreases when increasing MaxClients from 200 to
480, after which CPU usage is around 100%. In Fig. 11 this saturation state occurs when
MaxClients reaches approximately 800 [19, 20].

Our intuition as to why this happens is this: MaxClients is looking for a set of logi-
cal resources called Apache workers. These logical resources are divided into physical
resources such as CPU, memory, and I/O bandwidth. By increasing MaxClients until the
physical resources are saturated, more logical resources can run in parallel.

Fig. 9. Measuring Apache for static load

However, as soon as the physical resource is saturated, the further increase of the
logical resource does not increase parallelism. Instead, this increase adds overhead (for
example, due to switching processes).

The experimental results compare the online optimization methods in terms of the
minimum value of the achieved response time, convergence speed and stability. Figure
11 compares the performance of Newton’s method with Apache’s default scheme. The
figure contains three subfigures, each of which has two plots. In each figure, the upper
graph shows the trajectory of MaxClients and the lower graph shows the corresponding

25
Комп’ютерні науки та інформаційні технології

response time. Note that Newton’s method does improve the response time compared to
the standard Apache scheme. However, due to the variability of the response time, differ-
ent runs of Newton’s method can produce very different results. This is because obtaining
the Hessian matrix requires three samples to calculate the second derivative at each step
of the algorithm. This increases the convergence time and also makes the algorithm more
sensitive to noise in the response time measurement. Unfortunately, the response time
is usually quite noisy unless averaged over many samples (something that reduces the
speed with which the controller can respond to changes in workload). Because of this
sensitivity to noise, we do not consider Newton’s method in other comparisons.

Fig. 10. Apache Online Optimization Architecture Using Saturation-Based Heuristics
to Dynamically Adjust MaxClients and Changes in Bottleneck Usage

Next, we compare the typical Apache scheme with fuzzy control and the heuristic
method presented earlier. Figure 13 shows the results for dynamic loading. (The results
are structured similarly to Figure 11, 12, 13)

Fig. 11. A typical Apache control scheme

26
Таврійський науковий вісник № 4

We see that the heuristic converges to its MaxClients value after 2 minutes. For
fuzzy control, convergence takes about 14 minutes. On the other hand, fuzzy control
achieves a shorter response time. Figure 14 shows the results for static loading. Again,
heuristics converge faster than fuzzy control.

Fig. 12. First launch

Fig. 13. Second launch

27
Комп’ютерні науки та інформаційні технології

Comparison of the standard Apache method and the Newton method under dynamic
loading; Newton’s method certainly achieves a shorter response time, but its behavior is
inconsistent due to response time variability. Here, however, the steady-state response
time achieved by the heuristic method is almost equal to the response time achieved by
the fuzzy control.

Fig. 14. Comparison of performance of online optimization schemes under dynamic load

Table 4 shows a qualitative comparison of the four formed systems. The Apache
system handles minimization view points for response time mainly because it was not
designed for this purpose. The Newtonian method is better in this respect, but converges
completely and has poor immunity.

Table 4
Qualitative comparisons of methods

 Optimization Speed Robustness
Default Apache Poor Fast Good
Newton’s Method Fair Slow Poor
Fuzzy Control Good Slow Good
Heuristic Good Fast Fair

Fuzzy control is very stable, after which it is slightly assumed, but coincides com-
pletely. Our heuristics provide good optimization and fast convergence, but resource
overload assumptions are not always true.

Conclusions. This article explores an approach to web optimization of Apache web
server configuration settings, focusing on techniques that are less invasive and can be
applied to a wide range of settings and systems. We focus on the MaxClients parameter,
which controls the maximum number of clients. First, we show that MaxClients has an
ascending effect on response time and that descent methods can be used to determine
the optimal value of MaxClients. This has been demonstrated through measurements
and analytical modeling. The basic intuition is that MaxClients controls the trade-off
between TCP receive queue delays and delays due to contention for operating system
resources. We investigated two optimizers using the hill-climbing method (one based on
Newton’s method and the other based on fuzzy control); the third method is a heuristic

28
Таврійський науковий вісник № 4

that exploits the relationship between loading bottlenecks and minimizing response time.
In both cases, web optimization showed a response time reduction of more than 10 times
compared to using static default values. The trade-offs between online systems are as
follows. Newton’s method is well known, but it does not provide consistent results with
highly variable data such as response time. Fuzzy control is more reliable but converges
slowly. The heuristic method works well in our prototype system, but may be difficult
to generalize because it requires knowledge of bottlenecks and the ability to measure
resource usage. Future challenges include the following. First, optimization of several
parameters at the same time. This may include other parameters that can be configured
dynamically in Apache, such as KeepAliveTimeOut (which determines how long a TCP
connection must remain alive for a client before it is terminated). Second, although we
studied performance tuning of Apache web servers, there are more complex systems,
such as database servers and application servers, where online optimization can have a
more dramatic effect on end-user response times.

BIBLIOGRAPHY:
1. Y. Diao, J. L. Hellerstein, and S. Parekh, “Optimizing quality of service using

fuzzy control,” in Proceedings of Distributed Systems Operations and Management,
2012.

2. Apache Software Foundation. http://www.apache.org.
3. Y. Diao, J. L. Hellerstein, and S. Parekh, “A business-oriented approach to the

design of feedback loops for performance management,” in Proceedings of Distributed
Systems Operations and Management, 2011.

4. C. Lu, T. Abdelzaher, J. Stankovic, and S. Son, “A feedback control approach
forguaranteeing relative delays in web servers,” in Proceedings of the IEEE Real-Time
Technology and Applications Symposium, 2011.

5. Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury, “Using
MIMOfeedback control to enforce policies for interrelated metrics with application to
the Apache web server,” in Proceedings of Network Operations and Management, 2012.

6. L. Sha, X. Liu, Y. Lu, and T. Abdelzaher, “Queuing model based network
serverperformance control,” in Proceedings of the IEEE Real-Time Systems Symposium,
2012.

7. D. Menasce, V. Almeida, R. Fonsece, and M. Mendes, “Busines oriented
resourcemanagement policies for e-commerce servers,” Performance Evaluation, 2010,
(42), 223–239.

8. Z. Liu, M. S. Squillante, and J. L. Wolf, “On maximizing service-level-
agreementprofits,” in Proceedings of the ACM Conference on Electronic Commerce
(EC’11), 2011.

9. Mindcraft, “Webstone 2.5 web server benchmark,” 2008. http://www.mindcraft.
com/ webstone/.

10. Z. Liu, N. Niclausse, C. Jalpa-Villanueva, and S. Barbier, “Traffic model and
performance evaluation of web servers,” Tech. Rep. INRIA, 2009, 38-40

11. D. Mosberger and T. Jin, “httperf: A tool for measuring web server performance,”in
First Workshop on Internet Server Performance (WISP 2008), ACM, 2008, 59-67.

12. D. P. Olshefski, J. Nieh, and D. Agrawal, “Inferring client response time at the
webserver,” in Proceedings of the ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, 2012.

13. S. S. Lavenberg, ed., Computer performance modeling handbook. Orlando, FL:
Academic Press, INC, 2013.

14. L. Perssini, The Mathematics of Nonlinear Programming. Springer-Verlag, 2008.
15. K. M. Passino and S. Yurkovich, Fuzzy Control. Menlo Park, CA: Addison

Wesley Longman, 2008.

29
Комп’ютерні науки та інформаційні технології

16. Зайцев Є.О. Smart засоби визначення аварійних станів у розподільних елек-
тричних мережах міст. Таврійський науковий вісник. Серія: Технічні науки, 2022. (5).

17. Цвик О.С. Аналіз і особливості програмного забезпечення для контролю
трафіку. Вісник Хмельницького національного університету. Cерія: Технічні
науки, 2023. (1).

18. Новіченко Є.О. Актуальні засади створення алгоритмів обробки інформа-
ції для логістичних центрів. Таврійський науковий вісник. Серія: Технічні науки,
2023. (1).

19 Твердохліб А.О., Коротін Д.С. Ефективність функціонування комп’ютерних
систем при використанні технології блокчейн і баз данних. Таврійський науковий
вісник. Серія: Технічні науки, 2022. (6).

20. Lei Song (2008) Biswanath Mukherjee. On the Study of Multiple Backups and
Primary-Backup Link Sharing for Dynamic Service Provisioning in Survivable WDM
Mesh Networks / IEEE Journal on selected areas in Telecommunication. 2008, (26),
(6), 84-91.

REFERENCES:
1. Y. Diao, J. L. (2012). Hellerstein, and S. Parekh, “Optimizing quality of

service using fuzzy control,” in Proceedings of Distributed Systems Operations and
Management,

2. Apache Software Foundation. http://www.apache.org.
3. Y. Diao, J. L. Hellerstein, and S. Parekh. (2011). “A business-oriented approach

to the design of feedback loops for performance management,” in Proceedings of
Distributed Systems Operations and Management.

4. C. Lu, T. Abdelzaher, J. Stankovic, and S. Son. (2011). “A feedback control
approach forguaranteeing relative delays in web servers,” in Proceedings of the IEEE
Real-Time Technology and Applications Symposium.

5. Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M. Tilbury. (2012). “Using
MIMOfeedback control to enforce policies for interrelated metrics with application to
the Apache web server,” in Proceedings of Network Operations and Management.

6. L. Sha, X. Liu, Y. Lu, and T. Abdelzaher. (2012). “Queuing model based
network serverperformance control,” in Proceedings of the IEEE Real-Time Systems
Symposium.

7. D. Menasce, V. Almeida, R. Fonsece, and M. Mendes. (2010). “Busines oriented
resourcemanagement policies for e-commerce servers,” Performance Evaluation, (42),
223–239.

8. Z. Liu, M. S. Squillante, and J. L. Wolf, (2011). “On maximizing service-level-
agreementprofits,” in Proceedings of the ACM Conference on Electronic Commerce
(EC’11).

9. А. Mindcraft. (2008). “Webstone 2.5 web server benchmark” http://www.
mindcraft.com/ webstone/.

10. Z. Liu, N. Niclausse, C. Jalpa-Villanueva, and S. Barbier. (2009). “Traffic model
and performance evaluation of web servers,” Tech. Rep. 3840, INRIA, Dec.

11. D. Mosberger and T. Jin. (2008). “httperf: A tool for measuring web server
performance,”in First Workshop on Internet Server Performance (WISP 2008), ACM,
59-67.

12. D. P. Olshefski, J. Nieh, and D. Agrawal. (2012). “Inferring client response
time at the webserver,” in Proceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems.

13. S. S. Lavenberg, ed. (2013). Computer performance modeling handbook.
Orlando, FL: Academic Press, INC.

14. L. Perssini. (2008). The Mathematics of Nonlinear Programming. Springer-
Verlag.

30
Таврійський науковий вісник № 4

15. K. M. Passino and S. Yurkovich. (2008). Fuzzy Control. Menlo Park, CA:
Addison Wesley Longman.

16. Zaitsev Ye.O. (2022). Smart zasoby vyznachennia avariinykh staniv u
rozpodilnykh elektrychnykh merezhakh mist. Tavriiskyi naukovyi visnyk. Seriia:
Tekhnichni nauky, (5).

17. Tsvyk O.S. (2023). Analiz i osoblyvosti prohramnoho zabezpechennia dlia
kontroliu trafiku. Visnyk Khmelnytskoho natsionalnoho universytetu. Ceriia: Tekhnichni
nauky, (1).

18. Novichenko Ye.O. (2023). Aktualni zasady stvorennia alhorytmiv obrobky
informatsii dlia lohistychnykh tsentriv. Tavriiskyi naukovyi visnyk. Seriia: Tekhnichni
nauky, (1).

19. Tverdokhlib A.O., Korotin D.S. Efektyvnist funktsionuvannia kompiuternykh
system pry vykorystanni tekhnolohii blokchein i baz dannykh. Tavriiskyi naukovyi
visnyk. Seriia: Tekhnichni nauky, 2022, (6)

20. Lei Song (2008) Biswanath Mukherjee. On the Study of Multiple Backups and
Primary-Backup Link Sharing for Dynamic Service Provisioning in Survivable WDM
Mesh Networks / IEEE Journal on selected areas in Telecommunication. Vol. 26, No 6.
pр. 84–91.

