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In this work, we introduce a novel method for identifying dependent features in datasets
that lack a target variable, a critical challenge in unsupervised learning. Understanding feature
dependencies is essential in many machine learning applications, including dimensionality
reduction, feature selection, and data preprocessing, where capturing both linear and nonlinear
relationships among features is necessary. Traditional methods for dependency detection, such as
Pearson correlation, mutual information, and the correlation of distances, have been widely used
but often exhibit limitations, particularly when dealing with complex, high-dimensional data or
non-linear dependencies.

Our approach addresses these challenges by leveraging a synthetic dataset generation
technique. Specifically, we create synthetic features by sampling from the empirical distributions
of the original features. This ensures that synthetic features are statistically independent while
preserving the overall structure of the data. We then label the original dataset instances as 1
and the synthetic ones as 0, forming a binary classification problem. A Random Forest classifier
is trained to distinguish between these two classes, and the feature importance scores obtained
from the trained model provide insights into which features exhibit dependency. Features that
contribute significantly to the classification task are identified as dependent, while those with
lower importance scores are considered independent.

To evaluate the effectiveness of our method, we compare it against well-established dependency
detection techniques. Pearson correlation primarily captures linear dependencies, while mutual
information and correlation of distances can account for more complex relationships. Our
experimental results demonstrate that the proposed approach outperforms these traditional
methods by consistently identifying the correct set of dependent features across various tested
scenarios. Moreover, our method exhibits greater robustness to noise, making it a reliable tool
for unsupervised feature dependency detection in real-world datasets.

Key words: Machine Learning, Feature Dependencies, Random Forest, Unsupervised
Learning.

Jlumeun A. A. Memoo na ocHo6i 6unadKo8020 jicy 013 UAGIEHHA 3A/1€HCHOCHEI 03HAK:
nopienannsn 3 kopenauicro Ilipcona, 63acmnor ingpopmayicro ma Kopenayiero giocmanei

Y yiit pobomi mu npedcmasnsiemo Hogutl memoo i0enmugpikayii 3anexicHUX 03HaK y Habopax
Odanux Oe3 Yinbosoi 3MIHHOI, WO € KPUMUYHUM 3A60AHHAM Y HABYAHHT 6e3 yuumens. Pozyminns
3anedxcHOCmell MidIC O3HAKAMU € BAACTUBUM 051 6A2ANBOX 3ACMOCYBAHb MAWMUHHO20 HAGUAHHS,
30Kpema Onist 3MEHWEHHs PO3MIPHOCMI, 8UOOPY O3HAK [ nepedoOpoOKu Oauux, de HeoOXiOHO
6paxo8yeamu K AiHIUHI, MAaK i HEMIHIUHI 63AEMO036 3KU Midic o3Hakamu. Tpaouyitini memoou
BUABTIEHHS 3aaedcHOCcmell, maki sk Koegiyienm kopensyii Ilipcona, é3aemna ingopmayis ma
Kopenayisi giocmanetl, Wupoxo GUKOPUCMOBYIOMbCS, NPOMe 4aCo MAiomy 0OMENCeHH, 0COo-
01u60 npu pobomi 3i cKIAOHUMU, DALAMOBUMIPHUMU OAHUMY QDO HENTHIUHUMU 3ANEHCHOCHAMU.

Haw nioxio supiutye yi npobnemu 3a 00NOMO200 2eHepayii CUHMemu4Ho20 Habopy OaHUX.
3okpema, mu cmeoprOEMO CUHMEMUYHi O3HAKY, GUKOHYIOUU GUOIPKY 3 eMNIpUYHUX Po3noodinie
Buxionux osnax. Lle capanmye, wo cunmemuuni 03HaKu € CMAMUCIUYHO He3ANENCHUMU, B00HO-
uac sbepicarouu 3a2anvhy cmpykmypy Oanux. Jlani mu no3Havaemo 06 ’€kmu uxionozo Habopy
Odarux sk 1, a cunmemuunoeo — ax 0, popmyrouu 3adauy 6inapHoi knacugpikayii. /[na po3pisHenms
Yux 080X KAACI8 MU HABUAEMO KAACUDIKamop HA OCHO8I eunadkosoeo nicy (Random Forest),
a OMpUMAHi NOKA3HUKU BAACTUBOCTT O3HAK OQIOMb 3MO2Y GUIHAUUINU, SKI O3HAKU € 3ANEHCHUMU.
O3Haku, wjo cymmeso 6naugaioms Ha KIAcu@ikayiio, 86aicarmoesl 3aa1eHCHUMU, Moo 1K Mi, Wo
Maroms HU3bKI 3HAUEHHA BANCTUBOCTII, 86AICAIOMBCI HE3ANEHCHUMU.
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Jna oyinku epekmusHocmi HAWO20 MemMooy MU HOPIBHIOEMO 1020 3 GI0OMUMU MEXHIKAMU
susenenns 3anexcrocmeti. Kopensyis ITipcona nepesaxcno eusnsie NiHitiHI 3an1excHocmi, mooi
K 63a€EMHA IHQopmayis ma Kopenayis eiocmanell 00380180Mb 8pAX08y8amu Oiibld CKAAOHI
83aemM036 ’s13kuU. Hawii excnepumenmanvHi pesyiomamu noKazyloms, Wo 3anponoHo8aHuil nio-
Xi0 nepeseputye mpaouyitini Memoou, cmadiibHO SUSHAYAIOYU NPABUTLHULL HADID 3A1eHCHUX
O3HAK Y PI3HUX MeCcmosux cyenapisx. Kpim mozo, Hau memoo 0eMOHCMPYe uugy CImIitiKicns 00
WYMY, Wo pooums 1020 HAOTIHUM THCTNPYMEHMOM OISl BUABNICHHSL 3ANEAHCHOCIEU MINC O3HAKAMU
¥ 3a0a4ax HABYAHHS Oe3 yUUMes.

Kniouogi cnosa: mawunne Haguanus, 3anelCHOCMI MidiC O3HAKAMU, BUNAOKOGUL JTiC, HAG-
uanna Oe3 yyumens.

Introduction. Data mining, a crucial area of machine learning, involves extract-
ing useful patterns and knowledge from large datasets. In various domains, identifying
dependent features among a noisy collection of independent features is essential for
uncovering meaningful relationships within the data. Dependent features can reveal
correlations, causal relationships, or shared behaviours that contribute to understanding
the underlying structure of the dataset. However, in real-world data, features are often
intermixed with noise, and distinguishing dependencies from independent variables
becomes a complex task. This problem is not just a matter of academic interest; it has
significant practical implications. Accurately identifying dependent features is crucial
because it directly impacts the computational cost, the risk of overfitting, and the overall
decision-making process in machine learning models.

Traditional statistical methods like Pearson correlation and mutual information have
long been used to detect such dependencies, but they often struggle to capture nonlinear
and complex relationships in data. As the scale and complexity of data grow, the ability
to accurately identify dependent features becomes critical for tasks like feature selec-
tion, dimensionality reduction, and improving the performance of predictive models.
Failure to do so can lead to inefficient algorithms, increased computational costs, and
models that overfit to noise rather than capturing true underlying patterns.

Here is a more formal problem statement that is going to be studied in the paper.
Given a dataset D = {X1 2 Xy, .,X”} , where each X, is a feature vector of observations,
our goal is to identify the set of features that exhibit dependencies among each other.
These dependencies may be linear or nonlinear, but we are not interested in defining or
characterising the specific nature of the dependencies. Instead, the task is to provide a
list of features that are not independent noise. The problem is framed as follows:

e Input: Asetof features D={X, X,,...,X,}, where each X, represents a feature
in the dataset.

e Objective: Identify list of features that show dependency.

e Output:Aset F[D]c{X,,X,,....X,}, where each X, € F[D] is determined to
be dependent on at least one other feature in the dataset.

The specific goal is to distinguish these dependent features from features that are
purely independent noise without further exploring the precise characteristics of the
dependencies. In this paper, we specifically focus on cases where the number of depend-
ent features is restricted to three. In further studies it potentially can be generalised for
any unknown number of dependent features.

Random Forest and Feature Importance. This work relies heavily on the Random
Forest algorithm, an ensemble method, particularly its feature importance measure, to
identify dependent features. Ensemble methods are techniques that combine the predic-
tions of multiple models to create a stronger overall model. The idea is that by aggre-
gating the predictions of several models, the ensemble reduces errors and improves
accuracy compared to individual models.




| TaBpiticeknit HaykoBHH BicHHK Ne 1

78|

A decision tree is a supervised learning model used for classification and regression
tasks, characterized by its tree-like structure. In the context of a binary classification
problem, a decision tree aims to classify data points into one of two classes. The tree
consists of internal nodes, leaf nodes, and branches. Internal nodes represent decisions
or tests on an attribute, branches represent the outcome of the test, and leaf nodes rep-
resent the final class label.

Formally, a decision tree (namely CART algorithm defined in [1]) for binary classifi-
cation can be defined as a recursive partitioning of the feature space. The process begins
at the root node, which contains the entire dataset. At each internal node 7, the data is split
into two subsets based on a feature X; and a threshold 6 that best separates the data into
the two classes, aiming to minimize impurity or maximize information gain. This splitting
process continues recursively, creating child nodes, until a stopping condition is met (e.g.,
all data points in a node belong to the same class, or a maximum tree depth is reached).

The impurity / (t) at a node can be measured using the Gini impurity, which is par-
ticularly useful for binary classification. The Gini impurity is defined as:

2
1(1)=1-2pi
k=1

where p, is the proportion of class & instances at node ¢, and there are two classes
in the binary classification problem. The goal is to choose the feature and threshold that
result in the largest reduction in impurity from the parent node to the child nodes.

One can find more details in the book by Breiman et al. [1].

Decision trees are popular in binary classification due to their simplicity, interpreta-
bility, and ability to handle both numerical and categorical data. However, they can be
prone to overfitting, especially when the tree is deep and complex. Techniques such as
pruning, setting a maximum depth, or using ensemble methods like Random Forests can
help mitigate overfitting and improve generalization.

Random Forest, introduced by Breiman [2], is an ensemble learning method that con-
structs multiple decision trees and combines their outputs to improve classification perfor-
mance. In the context of a binary classification problem, Random Forest aims to classify data
points into one of two classes by aggregating the predictions of individual decision trees.

Formally, let D={(X,,3).(X,.»,).....(X,.»,)} be the training dataset, where X,
represents the feature vector and y, € {0,1} is the class label. The Random Forest algo-
rithm can be described as follows:

1. For b=1to B (number of trees in the forest):

a. Draw a bootstrap sample D, from the training data D .

b. Grow a decision tree 7, on D, by recursively repeating the following steps for
each node:

i. Select a random subset of features m from the total p features.

ii. Choose the best feature and threshold to split the node based on a criterion (e.g.,
Gini impurity).

iii. Split the node into two child nodes.

iv. Repeat steps i-iii until a stopping condition is met (e.g., maximum depth or min-
imum number of samples per node).

2. Aggregate the predictions of all B trees to make the final prediction. For a new
data point X , the Random Forest prediction y is given by:

5/ = mode({]}) (X):b= 1,2,...,3})
where 7, (X) is the prediction of the b -th tree.
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The randomness introduced by bootstrapping the data and selecting random subsets
of features at each split helps to reduce overfitting and improve the model’s generaliza-
tion ability.

Random Forests are particularly effective in handling high-dimensional data and
capturing complex interactions between features, making them a powerful tool for
binary classification problems.

A key advantage of Random Forests is their ability to measure feature importance.
In this paper, we rely on Gini importance (well described in [3]), a method for comput-
ing feature importance, as implemented in the scikit-learn library [4]. Gini importance
evaluates the ability of each feature to split the data into distinct classes, and we use it
to identify potentially dependent features.

Formal definition of Gini feature importance is well defined in [3]: importance of a
variable X ; for predicting ¥ by adding up the weighted impurity decreases p(¢)Ai(s,,t)
for all nodes ¢ where X, is used, averaged over all trees ¢, (for m=1,...,M ) in the
forest:

Imp( ) ZZl [p Az s t}

m=l1teg,,

. . N .
where p(t) is the proportion W’ of samples reaching ¢ and where j, denotes the

identifier of the variable used for splitting node ¢. When using the Gini index as the
impurity function, this measure is known as the Gini importance or Mean Decrease
Gini.

The success of Random Forests is evident in their extensive application across dis-
ciplines, from life sciences to finance, where they are used to extract valuable insights
from large, noisy datasets. In particular, Touw et al. [5] highlight the efficacy of Random
Forests in biological data mining, where they have become a preferred tool for manag-
ing complex, high-dimensional data. Their ability to handle nonlinear relationships and
variable interactions makes them a powerful technique for feature importance analysis.

Proposed Method. In this paper, we propose a novel method for identifying depend-
ent features in an unsupervised learning setting. The goal is to distinguish dependent
features from independent noise without making assumptions about the specific nature
of these dependencies. The core idea relies on generating a synthetic dataset that breaks
any existing dependencies between features by ensuring they are sampled independently.

Given a dataset D:{X X 2,...,Xn}, where each X, is a feature, we generate a
synthetic dataset S ={S,,S,,...,S,} where each S, is drawn from the empirical distri-
bution of the correspondlng X S ~ P( ) S, is constructed with replacement (i.e.
each element of the original X ; has a chance to appear multiple times in the synthetic
dataset). It is crusial to note that each S, is independent of the others S, for j#i by
design, as each S, is constructed independently.

The synthetic dataset S is constructed to be the same size as the original dataset D,
with the key distinction being that the features in S are independent by design. Depend-
encies, if present, exist only in the original dataset D .

To detect dependencies, we construct a new dataset Z where the original data points
are labelled as 1, and the synthetic data points are labelled as 0. This dataset structure
can be summarised as follows:

Z={(X,.1)| X,e D} U{(5,,0)|S, 5},
where S, ~ P(X,) and S, isindependentof S, foreach j #i.
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A Random Forest classifier is trained on this dataset Z, with the goal of distinguish-
ing between the original and synthetic data. The intuition is that features that help the
classifier differentiate between D and S must contain dependencies that were broken in
the synthetic dataset. The feature importance scores provided by the Random Forest
classifier are used to rank the importance of each feature. Features with high importance
scores are likely to be dependent on other features, while those with low importance are
more likely to be independent noise.

In our proposed method, the performance of the Random Forest classifier is tuned by
selecting optimal hyperparameters. Random Forest is a robust method with relatively few
hyperparameters to tune, making the process efficient. Additionally, the accuracy metric
used to evaluate the classifier’s ability to distinguish between original and synthetic data is
intuitive and straightforward. We will perform a grid search to explore different combina-
tions of parameters, such as the number of trees, maximum depth, minimum samples per
split and others. The optimised model with the highest accuracy will be used to generate
feature importance scores, which will then be employed to identify dependent features.

We rely on Gini importance as implemented in ‘scikit-learn® [4], which measures
how much a feature reduces impurity at each split in the decision trees.

By this approach, we can identify and discriminate dependent features. This method
is compared against traditional techniques such as Pearson correlation, mutual infor-
mation, and correlation of distances to evaluate its performance in identifying complex
feature dependencies.

Schema of the Proposed Method

The proposed method can be summarized in the following steps:

1. Input Dataset Processing

o Given input dataset D with features X, X,,..., X,

o Each feature X, represents a column of observations

2. Synthetic Dataset Generation

o Create synthetic dataset S by independently sampling with replacement from
each feature’s empirical distribution

o For each feature X,, generate S, ~ P(.X,)

o S, is independent of all other S, for j#i by design, as each feature is sampled
independently

3. Combined Dataset Construction
Create dataset Z by combining original and synthetic data
Label original data points as 1: (X,1)

Label synthetic data points as 0: (S],,O)

Dataset Z is perfectly balanced by design with equal number of 0 and 1 labels
Random Forest Training and Optimization

Perform grid search over hyperparameters

Use accuracy as optimization metric (optimal due to balanced classes)

Train Random Forest with optimal hyperparameters on dataset Z

Feature Importance Analysis

Extract Gini importance scores from optimized Random Forest

Rank features based on importance scores

Higher scores indicate likely dependent features

o Lower scores suggest independent (noise) features

This schema illustrates how the method transforms the unsupervised problem of
detecting feature dependencies into a supervised learning task, leveraging the Random
Forest classifier’s ability to identify important features that distinguish between the

000 wooohoooo
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original and synthetic datasets. And the balanced nature of the constructed dataset Z
makes accuracy an ideal metric for hyperparameter optimization.

Competitor Methods

Pearson Correlation

Pearson correlation [6] is one of the methods we compare against in this paper. It is
a statistical measure that quantifies the linear relationship between two continuous var-
iables. The Pearson correlation coefficient, denoted by » , ranges from —1 to 1, where
r =1 indicates a perfect positive linear relationship, » =—1 indicates a perfect negative
linear relationship, and » =0 suggests no linear relationship between the variables. The
formula for Pearson correlation is:

z[x,._;?}[y,._?] |
LT

where X, and Y, represent the individual data points, and X and Y are their respec-
tive means. Pearson correlation is widely used due to its simplicity and ease of interpre-
tation for linear relationships [6]. For this study, we use the implementation provided in
the numpy library [7].

The main advantage of Pearson correlation is its straightforward calculation and
its effectiveness in detecting linear dependencies between variables. However, its pri-
mary limitation is that it might miss nonlinear relationships, thus nonlinear relationships
between features may go undetected, making it less effective for problems where the
dependencies are more complex. Moreover, Pearson correlation assumes that the data is
normally distributed and free of significant outliers, which can skew the results.

In our context, Pearson correlation is a useful baseline to detect linear dependencies
between features. However, since we are concerned with capturing a broader range of
relationships (including nonlinear and more complex dependencies), Pearson correla-
tion alone may miss important feature interactions that are critical for distinguishing
dependent features from independent noise.

It is important to note that we will use absolute values of the Pearson correlation
coefficient as we don’t care about the direction of the relationship, we only care about
the existance of the relationship. Thus higher values of the absolute values of Pearson
correlation coefficient indicate stronger relationships between features.

Mutual Information

Mutual information (MI) [8] is a key measure from information theory that quanti-
fies the amount of information obtained about one random variable through another. It
captures both linear and nonlinear dependencies between variables, making it more ver-
satile than simpler measures like Pearson correlation. The mutual information / (X ;Y )
between two variables X and Y is defined as:

I[(X;Y)=H(X)+H(Y)-H(X,Y)

where H(X) and H (Y) are the entropies of the variables, and H (X,Y) is their
joint entropy. MI measures how much knowing one variable reduces uncertainty about
the other, making it a robust tool for detecting dependencies, even in complex data-
sets. In the context of this paper, MI helps identify dependent features by quantifying
the shared information between features, without assuming any specific linear relation-
ships. The higher the MI value is, the more dependent the features presumed to be.

=
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Mutual information is highly suited to detecting a broad range of dependencies,
including nonlinear and conditional relationships, making it a powerful tool for identi-
fying dependent features in unsupervised settings. However, MI’s reliance on the choice
of hyperparameters can introduce variability in the results. Despite these limitations,
mutual information remains a robust method for feature dependency detection, comple-
menting the other methods we explore in this paper.

For the theoretical foundation of mutual information, we reference Cover and
Thomas [8], and the practical estimation follows the implementation described in Kras-
kov et al. [9] and provided by ‘scikit-learn® [4].

Practical Estimation of Mutual Information

In practice, mutual information is estimated from sample data rather than theoretical
distributions. This requires approximating the joint probability distributions of the fea-
tures using techniques such as k-nearest neighbours (k-NN). The method implemented
in ‘scikit-learn‘ [4] for mutual information, based on work by Kraskov et al. [9], uses a
nearest-neighbours approach to estimate MI from samples. The MI between two vari-
ables X and Y is estimated by considering the number of neighbouring points in the
joint space of the variables, which provides an approximation of the shared information.

However, mutual information estimation through k-NN faces a hyperparameter
selection issue—specifically, the choice of n_neighbors , which controls how many
neighbours are considered in the estimation process. Selecting too few neighbours may
lead to underestimation, while selecting too many can smooth out dependencies, miss-
ing subtle relationships. For this study, we use the default settings provided by ‘scikit-
learn‘ to ensure consistency across simulations, but acknowledge that the choice of this
parameter can significantly impact the results.

Correlation of Distances

Distance correlation, as discussed in [10], is a method for detecting both linear and
nonlinear dependencies between variables. Unlike traditional correlation measures, it
captures complex relationships by analyzing the distances between data points. This
method is particularly effective at identifying nonlinear dependencies, which are often
missed by simpler metrics like Pearson correlation [6].

Distance correlation is well-suited for identifying dependent features in unsuper-
vised settings due to its ability to capture a wide range of dependencies without assum-
ing a specific functional form. For theoretical insights, we refer to Székely et al. [10],
and for practical implementation, we utilize the ‘dcor® library [10].

Higher values of distance correlation coefficient indicate stronger relationships
between features.

Practical Estimation of Distance Correlation

For practical estimation, we rely on the ‘dcor’ library, which implements distance
correlation as described by Székely et al. [11]. The key parameter in this method is the
exponent p, with a default value of 1, representing the exponent of the Euclidean dis-
tance. Adjusting this exponent can alter the method’s sensitivity to local versus global
dependencies. For our simulations, we use the default settings in the ‘dcor® library [11],
but recognize that changing this parameter can influence the detection of relationships.

Data Generation for Simulations

For our simulations, we generate a dataset with two types of features: independent
noise features and dependent features. First, we create seven independent noise features,
each sampled from a standard normal distribution with a mean of zero and a standard
deviation of one. These features represent random noise with no dependencies.

Next, we generate three dependent features. The first two features, local trigger
and slope, are also sampled from a standard normal distribution and are independent of
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each other. The third feature introduces dependency among the three. Specifically, when
the value of local trigger is less than zero, the third feature is sampled from a standard
normal distribution independently. However, when local trigger is greater than zero,
the third feature is calculated as:

X =slope +strength of noise x random_noise

where random_noise is drawn from a normal distribution with a mean of zero and a
standard deviation of one. Afterward, we normalise the third feature by subtracting its
sample mean and dividing by its sample standard deviation, ensuring that it is scaled to
a standard normal distribution. Please note that local trigger and slope are generated
once for the whole dataset and are the same for all samples in that dataset.

The total sample size for all features is 10000. We will repeat the simulation
100 times to study the distribution of calculated statistics and the performance of
the proposed method and competitors. It is important to note that there is no hidden
meaning or “magic” behind the specific numbers used in the data generation process
(seven independent features, three dependent features, /0000 samples, 100 repetitions
per noise level). These values are used as default starting points for this study. Future
research could explore how the method behaves with different numbers of features,
noise strength, and sample sizes.

Simulation Results

Let us briefly review the structure and purpose of our simulations. We generate ran-
dom samples containing both dependent and independent features, with varying degrees
of noise added to the dependent features. For each noise level, we generate multiple data-
sets to evaluate the effectiveness of different methods in terms of accuracy and statistical
significance, as well as to study the distribution of the statistics produced by each method.
For detailed simulation outputs and additional analysis, please refer to the appendix.

Accuracy Results

Table 1
Accuracy Results for Different Methods Across Noise Levels
Method Metric | Noise=0.01 | Noise=0.1 | Noise=1.0 | Noise=10.0
Distance Correlation | Accuracy 0.448 0.447 0.690 0.680
Precision 0.496 0.496 0.690 0.680
Recall 0.823 0.820 1.000 1.000
Mutual Information | Accuracy 0.414 0.424 0.647 0.408
Precision 0.465 0.473 0.647 0.466
Recall 0.790 0.803 1.000 0.767
Pearson Correlation | Accuracy 0.437 0.437 0.441 0.449
Precision 0.489 0.489 0.491 0.499
Recall 0.803 0.803 0.813 0.817
Proposed Method Accuracy 1.000 1.000 1.000 0.563
Precision 1.000 1.000 1.000 0.720
Recall 1.000 1.000 1.000 0.720

The accuracy results in Table 1 demonstrate that competitor methods tend to label
additional features as dependent, showing a tendency for false positives across all noise
levels. In contrast, the proposed method achieved perfect accuracy results for each
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degree of added noise, except for the highest noise one, where it still showed better
accuracy results against competitors except for Distance Correlation.

Distribution Analysis
Table 2
Lognormal Distribution Test Results for Distance Correlation
(Kolmogorov-Smirnov Test)
Noise Level | Statistic Type | Test Statistic | p-value Type of aggregation

0.01 Dependent 0.066 0.759 Average
Independent 0.052 0.933 Average

Dependent 0.039 0.997 Maximum

Independent 0.075 0.595 Maximum

Dependent 0.083 0.476 Minimum

Independent 0.055 0.907 Minimum
0.10 Dependent 0.064 0.776 Average
Independent 0.061 0.828 Average

Dependent 0.040 0.995 Maximum

Independent 0.066 0.756 Maximum

Dependent 0.056 0.889 Minimum

Independent 0.050 0.950 Minimum
1.00 Dependent 0.057 0.885 Average
Independent 0.065 0.762 Average

Dependent 0.069 0.706 Maximum

Independent 0.072 0.655 Maximum

Dependent 0.064 0.788 Minimum

Independent 0.052 0.938 Minimum
10.00 Dependent 0.066 0.746 Average
Independent 0.055 0.905 Average

Dependent 0.053 0.928 Maximum

Independent 0.077 0.571 Maximum

Dependent 0.064 0.788 Minimum

Independent 0.042 0.992 Minimum

Table 3
Lognormal Distribution Test Results for Mutual Information
(Kolmogorov-Smirnov Test)
Noise Level | Statistic Type | Test Statistic | p-value Type of aggregation
1 2 3 4 5

0.01 Dependent 0.044 0.985 Average
Independent 0.081 0.504 Average

Dependent 0.077 0.566 Maximum

Independent 0.077 0.562 Maximum

Dependent 0.096 0.931 Minimum

Independent NA NA Minimum
0.10 Dependent 0.057 0.884 Average
Independent 0.055 0.911 Average
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Table 3 (Continued)
1 2 3 4 5

Dependent 0.113 0.143 Maximum

Independent 0.060 0.848 Maximum

Dependent 0.121 0.780 Minimum

Independent NA NA Minimum
1.00 Dependent 0.062 0.819 Average
Independent 0.057 0.878 Average

Dependent 0.064 0.780 Maximum

Independent 0.057 0.886 Maximum

Dependent 0.154 0.202 Minimum

Independent NA NA Minimum
10.00 Dependent 0.058 0.867 Average
Independent 0.081 0.499 Average

Dependent 0.076 0.589 Maximum

Independent 0.056 0.889 Maximum

Dependent 0.176 0.227 Minimum

Independent NA NA Minimum

Table 4
Lognormal Distribution Test Results for Pearson Correlation
(Kolmogorov-Smirnov Test)
Noise Level | Statistic Type | Test Statistic | p-value Type of aggregation

0.01 Dependent 0.074 0.625 Average
Independent 0.094 0.324 Average

Dependent 0.057 0.877 Maximum

Independent 0.053 0.925 Maximum

Dependent 0.108 0.177 Minimum

Independent 0.110 0.168 Minimum
0.10 Dependent 0.074 0.622 Average
Independent 0.101 0.246 Average

Dependent 0.058 0.865 Maximum

Independent 0.064 0.787 Maximum

Dependent 0.131 0.060 Minimum

Independent 0.102 0.236 Minimum
1.00 Dependent 0.048 0.965 Average
Independent 0.084 0.452 Average

Dependent 0.065 0.772 Maximum

Independent 0.059 0.860 Maximum

Dependent 0.108 0.179 Minimum

Independent 0.107 0.186 Minimum
10.00 Dependent 0.071 0.670 Average
Independent 0.056 0.895 Average

Dependent 0.042 0.992 Maximum

Independent 0.050 0.951 Maximum

Dependent 0.125 0.082 Minimum

Independent 0.088 0.396 Minimum
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Table 5
Lognormal Distribution Test Results for Proposed Method
(Kolmogorov-Smirnov Test)

Noise Level | Statistic Type | Test Statistic | p-value Type of aggregation

0.01 Dependent 0.092 0.348 Average
Independent 0.103 0.224 Average

Dependent 0.056 0.891 Maximum

Independent 0.099 0.260 Maximum

Dependent 0.092 0.351 Minimum

Independent 0.100 0.253 Minimum
0.10 Dependent 0.100 0.258 Average
Independent 0.100 0.257 Average

Dependent 0.081 0.506 Maximum

Independent 0.088 0.403 Maximum

Dependent 0.078 0.550 Minimum

Independent 0.114 0.139 Minimum
1.00 Dependent 0.274 <0.001* Average
Independent 0.301 <0.001* Average

Dependent 0.280 <0.001* Maximum

Independent 0.244 <0.001* Maximum

Dependent 0.166 0.007* Minimum

Independent 0.278 <0.001* Minimum
10.00 Dependent 0.085 0.445 Average
Independent 0.052 0.938 Average

Dependent 0.052 0.935 Maximum

Independent 0.074 0.614 Maximum

Dependent 0.068 0.724 Minimum

Independent 0.078 0.544 Minimum

* Indicates rejection of lognormal distribution hypothesis at 5% significance level

The Kolmogorov-Smirnov test results in Tables 2, 3, 4, and 5 examine the distribu-
tion of aggregated statistics (minimum, maximum, and average) across 100 simulation
runs for each method. The results confirm that these aggregated statistics generally fol-
low a lognormal distribution at the 5% significance level for both the proposed method
and competitors, with the notable exception of noise level 1.0. At this noise level, as
indicated by asterisks in Table 5, all aggregation types (minimum, maximum, and aver-
age) reject the lognormal distribution hypothesis. It should be noted that some results
for mutual information are marked as NA (Not Available) due to technical limitations in
computing the statistics under certain conditions.

Mann-Whitney U Test Analysis

We conducted Mann-Whitney U tests (Table 6) to compare the minimum statistics
values for dependent features against the maximum statistics values for independent
features. This comparison is crucial because higher statistics values indicate stronger
dependency signals between features. Therefore, optimal results would show a clear sep-
aration between the minimum dependent and maximum independent statistics values.
We found that for competitor methods average maximum independent statistics were
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higher than average minimum dependent statistics (column Dependent > Independent
is equal to False) for all noise levels, which indicates that the distinction between noise
and dependent features might not be clear. On the other hand, for the proposed method,
the average minimum dependent statistics were higher than the average maximum inde-
pendent statistics for all noise levels, except for noise level 10.00 (the largest noise level
tested), and the difference is statistically significant (p-value = 0.001), indicating a clear
separation between dependent and independent features.

Table 6
Mann-Whitney U Test Results
Method Eg‘l’s; St%t,l;zlc p-value | Dependent > Independent
Distance Correlation 0.01 max vs min 1.0 False
0.10 | max vs min 1.0 False
1.00 max vs min 1.0 False
10.00 | max vs min 1.0 False
Mutual Information 0.01 max vs min 1.0 False
0.10 | max vs min 1.0 False
1.00 max vs min 1.0 False
10.00 | max vs min 1.0 False
Pearson Correlation (abs) | 0.01 max vs min 1.0 False
0.10 | max vs min 1.0 False
1.00 max vs min 1.0 False
10.00 | max vs min 1.0 False
Proposed Method 0.01 | maxvsmin | 0.0* True
0.10 | max vsmin | 0.0* True
1.00 max vs min 0.0%* True
10.00 | max vs min | 0.999 False

* Indicates statistical significance at 5% level (p < 0.05)

t-Test Analysis

We conducted t-tests on log-transformed statistics (Table 7) to compare the min-
imum statistics values for dependent features against the maximum statistics values
for independent features, after confirming that the statistics follow lognormal distri-
butions. Similar to the Mann-Whitney U test analysis, this comparison helps assess
the separation between dependent and independent features. The results show that for
competitor methods, the maximum independent statistics were higher than minimum
dependent statistics across all noise levels, indicating poor separation. In contrast, the
proposed method demonstrated clear separation with minimum dependent statistics
being higher than maximum independent statistics for noise levels 0.01, 0.1, and 1.0,
with statistical significance (p < 0.001). However, it’s worth noting that for noise level
1.0, we could not confirm the lognormal distribution assumption for the proposed
method’s statistics, so these particular t-test results should be interpreted with caution
as the normality assumption may not hold. At the highest noise level (10.0), the pro-
posed method, like the competitors, failed to maintain separation between dependent
and independent features.
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Table 7
t-Test Results on Log-Transformed Statistics
Method Noise Level | Statistic Type | p-value | Dep > Ind
Distance Correlation 0.01 max vs min 1.000 False
0.10 max vs min 1.000 False
1.00 max vs min 1.000 False
10.00 max vs min 1.000 False
Mutual Information 0.01 max vs min 1.000 False
0.10 max vs min 1.000 False
1.00 max vs min 1.000 False
10.00 max vs min 1.000 False
Pearson Correlation (abs) 0.01 max vs min 1.000 False
0.10 max vs min 1.000 False
1.00 max vs min 1.000 False
10.00 max vs min 1.000 False
Proposed Method 0.01 max vs min | <0.001* True
0.10 max vs min | <0.001* True
1.00 max vs min | <0.001* True
10.00 max vs min 0.999 False
* Indicates statistical significance at 5% level (p < 0.05)
Confidence Interval Analysis
Table 8
Confidence Intervals for Distance Correlation
Noise Level Statistic Type Lower Bound Upper Bound
0.01 Max Independent 0.022 0.035
Min Dependent 0.011 0.021
0.10 Max Independent 0.022 0.035
Min Dependent 0.011 0.021
1.00 Max Independent 0.022 0.035
Min Dependent 0.011 0.026
10.00 Max Independent 0.022 0.034
Min Dependent 0.011 0.026
Table 9
Confidence Intervals for Mutual Information
Noise Level Statistic Type Lower Bound Upper Bound
0.01 Max Independent 0.011 0.026
Min Dependent 0.000 0.020
0.10 Max Independent 0.011 0.026
Min Dependent 0.000 0.017
1.00 Max Independent 0.011 0.026
Min Dependent 0.000 0.041
10.00 Max Independent 0.011 0.025
Min Dependent 0.000 0.028
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Table 10
Confidence Intervals for Pearson Correlation (absolute values)

Noise Level Statistic Type Lower Bound Upper Bound
0.01 Max Independent 0.017 0.034
Min Dependent 0.000 0.048
0.10 Max Independent 0.017 0.034
Min Dependent 0.000 0.055
1.00 Max Independent 0.017 0.034
Min Dependent 0.000 0.040
10.00 Max Independent 0.018 0.033
Min Dependent 0.000 0.044

Table 11
Confidence Intervals for Proposed Method

Noise Level Statistic Type Lower Bound Upper Bound
0.01 Max Independent 0.081 0.090
Min Dependent 0.120 0.141
0.10 Max Independent 0.081 0.090
Min Dependent 0.119 0.143
1.00 Max Independent 0.083 0.100
Min Dependent 0.102 0.121
10.00 Max Independent 0.062 0.085
Min Dependent 0.059 0.083

The confidence intervals presented in Tables 8, 9, 10, and 11 were constructed
assuming lognormal distributions of the test statistics, as supported by our Kolmogor-
ov-Smirnov test results. These intervals reveal important patterns in the discriminative
power of each method. All competitor methods (Distance Correlation, Mutual Informa-
tion, and Pearson Correlation) exhibit similar patterns of substantial overlap between
the confidence intervals of maximum independent and minimum dependent statistics
across all noise levels. This consistent overlap suggests that these traditional methods
face inherent challenges in reliably distinguishing between dependent and independ-
ent features. In contrast, the proposed method demonstrates different behavior, with
non-overlapping confidence intervals for noise levels up to 1.00. This clear separation
begins to diminish only at the highest noise level (10.00), where the intervals start to
overlap. The maintenance of distinct confidence intervals under varying noise condi-
tions, compared to the consistent overlap seen in competitor methods, provides statisti-
cal evidence for the superior discriminative capability of our proposed method.

Conclusions. In this paper, we have presented a novel method for detecting feature
dependencies based on random forest feature importance scores. Through simulations
and comparative analysis with established methods like distance correlation, mutual
information, and Pearson correlation, we have demonstrated several key findings:

First, our proposed method shows superior accuracy in detecting dependencies across
different noise levels compared to traditional approaches. It only fell behind Distance
Correlation at the highest tested noise level. While competitor methods tend to produce
false positives, our method maintains perfect accuracy up to moderate noise levels and
continues to outperform most other methods even under high noise conditions.
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Second, the confidence interval analysis reveals that our method provides better
statistical separation between dependent and independent features. Unlike traditional
methods, which show substantial overlap in their confidence intervals, our approach
maintains distinct intervals until extreme noise levels, providing more reliable discrim-
ination between feature types.

Third, the robustness of our method shows its consistent performance across various
noise levels, only showing degradation at the highest noise level (10.0). This stability
is particularly valuable in real-world applications where the strength of dependencies
may vary.

However, there are limitations and areas for future research. The method’s perfor-
mance degradation at very high noise levels suggests room for improvement in extreme
conditions. Additionally, future work could explore the method’s behavior with different
types of dependencies, varying numbers of features, and different sample sizes.

In conclusion, our proposed method represents a significant advancement in feature
dependency detection, offering improved accuracy and reliability compared to tradi-
tional approaches. These improvements make it a valuable tool for various applications
in data analysis and feature selection, particularly in scenarios where complex depend-
encies need to be identified in the presence of noise.
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APPENDIX:

1. Simulation  Code.  https://github.com/arteml12345/Random-Forest-Based-
Method-for-Detecting-Feature-Dependencies

2. Whole Simulation Output. https://github.com/arteml12345/Random-Forest-
Based-Method-for-Detecting-Feature-Dependencies/blob/main/full _simulation_
output.html

3. Simulation Results, Raw Sample Output. https://github.com/arteml12345/
Random-Forest-Based-Method-for-Detecting-Feature-Dependencies/blob/main/
statistics.csv




