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In this work, we introduce a novel method for identifying dependent features in datasets 
that lack a target variable, a critical challenge in unsupervised learning. Understanding feature 
dependencies is essential in many machine learning applications, including dimensionality 
reduction, feature selection, and data preprocessing, where capturing both linear and nonlinear 
relationships among features is necessary. Traditional methods for dependency detection, such as 
Pearson correlation, mutual information, and the correlation of distances, have been widely used 
but often exhibit limitations, particularly when dealing with complex, high-dimensional data or 
non-linear dependencies.

Our approach addresses these challenges by leveraging a synthetic dataset generation 
technique. Specifically, we create synthetic features by sampling from the empirical distributions 
of the original features. This ensures that synthetic features are statistically independent while 
preserving the overall structure of the data. We then label the original dataset instances as 1 
and the synthetic ones as 0, forming a binary classification problem. A Random Forest classifier 
is trained to distinguish between these two classes, and the feature importance scores obtained 
from the trained model provide insights into which features exhibit dependency. Features that 
contribute significantly to the classification task are identified as dependent, while those with 
lower importance scores are considered independent.

To evaluate the effectiveness of our method, we compare it against well-established dependency 
detection techniques. Pearson correlation primarily captures linear dependencies, while mutual 
information and correlation of distances can account for more complex relationships. Our 
experimental results demonstrate that the proposed approach outperforms these traditional 
methods by consistently identifying the correct set of dependent features across various tested 
scenarios. Moreover, our method exhibits greater robustness to noise, making it a reliable tool 
for unsupervised feature dependency detection in real-world datasets.

Key words: Machine Learning, Feature Dependencies, Random Forest, Unsupervised 
Learning.

Литвин А. А. Метод на основі випадкового лісу для виявлення залежностей ознак: 
порівняння з кореляцією Пірсона, взаємною інформацією та кореляцією відстаней

У цій роботі ми представляємо новий метод ідентифікації залежних ознак у наборах 
даних без цільової змінної, що є критичним завданням у навчанні без учителя. Розуміння 
залежностей між ознаками є важливим для багатьох застосувань машинного навчання, 
зокрема для зменшення розмірності, вибору ознак і передобробки даних, де необхідно 
враховувати як лінійні, так і нелінійні взаємозв’язки між ознаками. Традиційні методи 
виявлення залежностей, такі як коефіцієнт кореляції Пірсона, взаємна інформація та 
кореляція відстаней, широко використовуються, проте часто мають обмеження, осо-
бливо при роботі зі складними, багатовимірними даними або нелінійними залежностями.

Наш підхід вирішує ці проблеми за допомогою генерації синтетичного набору даних. 
Зокрема, ми створюємо синтетичні ознаки, виконуючи вибірку з емпіричних розподілів 
вихідних ознак. Це гарантує, що синтетичні ознаки є статистично незалежними, водно-
час зберігаючи загальну структуру даних. Далі ми позначаємо об’єкти вихідного набору 
даних як 1, а синтетичного – як 0, формуючи задачу бінарної класифікації. Для розрізнення 
цих двох класів ми навчаємо класифікатор на основі випадкового лісу (Random Forest), 
а отримані показники важливості ознак дають змогу визначити, які ознаки є залежними. 
Ознаки, що суттєво впливають на класифікацію, вважаються залежними, тоді як ті, що 
мають низькі значення важливості, вважаються незалежними.
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Для оцінки ефективності нашого методу ми порівнюємо його з відомими техніками 
виявлення залежностей. Кореляція Пірсона переважно виявляє лінійні залежності, тоді 
як взаємна інформація та кореляція відстаней дозволяють враховувати більш складні 
взаємозв’язки. Наші експериментальні результати показують, що запропонований під-
хід перевершує традиційні методи, стабільно визначаючи правильний набір залежних 
ознак у різних тестових сценаріях. Крім того, наш метод демонструє вищу стійкість до 
шуму, що робить його надійним інструментом для виявлення залежностей між ознаками 
у задачах навчання без учителя.

Ключові слова: машинне навчання, залежності між ознаками, випадковий ліс, нав-
чання без учителя.

Introduction. Data mining, a crucial area of machine learning, involves extract-
ing useful patterns and knowledge from large datasets. In various domains, identifying 
dependent features among a noisy collection of independent features is essential for 
uncovering meaningful relationships within the data. Dependent features can reveal 
correlations, causal relationships, or shared behaviours that contribute to understanding 
the underlying structure of the dataset. However, in real-world data, features are often 
intermixed with noise, and distinguishing dependencies from independent variables 
becomes a complex task. This problem is not just a matter of academic interest; it has 
significant practical implications. Accurately identifying dependent features is crucial 
because it directly impacts the computational cost, the risk of overfitting, and the overall 
decision-making process in machine learning models.

Traditional statistical methods like Pearson correlation and mutual information have 
long been used to detect such dependencies, but they often struggle to capture nonlinear 
and complex relationships in data. As the scale and complexity of data grow, the ability 
to accurately identify dependent features becomes critical for tasks like feature selec-
tion, dimensionality reduction, and improving the performance of predictive models. 
Failure to do so can lead to inefficient algorithms, increased computational costs, and 
models that overfit to noise rather than capturing true underlying patterns.

Here is a more formal problem statement that is going to be studied in the paper. 
Given a dataset D X X X n� �� �1 2, , , , where each Xi  is a feature vector of observations, 
our goal is to identify the set of features that exhibit dependencies among each other. 
These dependencies may be linear or nonlinear, but we are not interested in defining or 
characterising the specific nature of the dependencies. Instead, the task is to provide a 
list of features that are not independent noise. The problem is framed as follows:

•	 Input: A set of features D X X X n� �� �1 2, , , , where each Xi  represents a feature 
in the dataset.

•	 Objective: Identify list of features that show dependency.
•	 Output: A set F D X X X n� �� �� �1 2, , , , where each X F Di � � �  is determined to 

be dependent on at least one other feature in the dataset.
The specific goal is to distinguish these dependent features from features that are 

purely independent noise without further exploring the precise characteristics of the 
dependencies. In this paper, we specifically focus on cases where the number of depend-
ent features is restricted to three. In further studies it potentially can be generalised for 
any unknown number of dependent features.

Random Forest and Feature Importance. This work relies heavily on the Random 
Forest algorithm, an ensemble method, particularly its feature importance measure, to 
identify dependent features. Ensemble methods are techniques that combine the predic-
tions of multiple models to create a stronger overall model. The idea is that by aggre-
gating the predictions of several models, the ensemble reduces errors and improves 
accuracy compared to individual models.
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A decision tree is a supervised learning model used for classification and regression 
tasks, characterized by its tree-like structure. In the context of a binary classification 
problem, a decision tree aims to classify data points into one of two classes. The tree 
consists of internal nodes, leaf nodes, and branches. Internal nodes represent decisions 
or tests on an attribute, branches represent the outcome of the test, and leaf nodes rep-
resent the final class label.

Formally, a decision tree (namely CART algorithm defined in [1]) for binary classifi-
cation can be defined as a recursive partitioning of the feature space. The process begins 
at the root node, which contains the entire dataset. At each internal node t , the data is split 
into two subsets based on a feature X j  and a threshold θ  that best separates the data into 
the two classes, aiming to minimize impurity or maximize information gain. This splitting 
process continues recursively, creating child nodes, until a stopping condition is met (e.g., 
all data points in a node belong to the same class, or a maximum tree depth is reached).

The impurity I t� �  at a node can be measured using the Gini impurity, which is par-
ticularly useful for binary classification. The Gini impurity is defined as:

I t p
k

k� � � �
�
�1

1

2
2

where pk  is the proportion of class k  instances at node t , and there are two classes 
in the binary classification problem. The goal is to choose the feature and threshold that 
result in the largest reduction in impurity from the parent node to the child nodes.

One can find more details in the book by Breiman et al. [1].
Decision trees are popular in binary classification due to their simplicity, interpreta-

bility, and ability to handle both numerical and categorical data. However, they can be 
prone to overfitting, especially when the tree is deep and complex. Techniques such as 
pruning, setting a maximum depth, or using ensemble methods like Random Forests can 
help mitigate overfitting and improve generalization.

Random Forest, introduced by Breiman [2], is an ensemble learning method that con-
structs multiple decision trees and combines their outputs to improve classification perfor-
mance. In the context of a binary classification problem, Random Forest aims to classify data 
points into one of two classes by aggregating the predictions of individual decision trees.

Formally, let D X y X y X yn n� � � � � � � �� �1 1 2 2, , , , , ,  be the training dataset, where Xi  
represents the feature vector and yi �� �0 1,  is the class label. The Random Forest algo-
rithm can be described as follows:

1.	 For b =1 to B  (number of trees in the forest):
a.	 Draw a bootstrap sample Db  from the training data D .
b.	 Grow a decision tree Tb  on Db  by recursively repeating the following steps for 

each node:
i.	 Select a random subset of features m  from the total p  features.
ii.	 Choose the best feature and threshold to split the node based on a criterion (e.g., 

Gini impurity).
iii.	Split the node into two child nodes.
iv.	 Repeat steps i-iii until a stopping condition is met (e.g., maximum depth or min-

imum number of samples per node).
2.	 Aggregate the predictions of all B  trees to make the final prediction. For a new 

data point X , the Random Forest prediction y  is given by:
y T X b Bb
 � � � � �� �� �mode : , , ,1 2

where T Xb � �  is the prediction of the b -th tree.
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The randomness introduced by bootstrapping the data and selecting random subsets 
of features at each split helps to reduce overfitting and improve the model’s generaliza-
tion ability.

Random Forests are particularly effective in handling high-dimensional data and 
capturing complex interactions between features, making them a powerful tool for 
binary classification problems.

A key advantage of Random Forests is their ability to measure feature importance. 
In this paper, we rely on Gini importance (well described in [3]), a method for comput-
ing feature importance, as implemented in the scikit-learn library [4]. Gini importance 
evaluates the ability of each feature to split the data into distinct classes, and we use it 
to identify potentially dependent features.

Formal definition of Gini feature importance is well defined in [3]: importance of a 
variable X j  for predicting Y  by adding up the weighted impurity decreases p t i s tt� � � �� ,  
for all nodes t  where X j  is used, averaged over all trees φm  (for m M� �1, , ) in the 
forest:

Imp X
M

j j p t i s tj
m

M

t
t t

m

� � � �� � � � � ��� ��
� �
��1

1
1 �

� ,

where p t� �  is the proportion N

N
t  of samples reaching t  and where jt  denotes the 

identifier of the variable used for splitting node t . When using the Gini index as the 
impurity function, this measure is known as the Gini importance or Mean Decrease 
Gini.

The success of Random Forests is evident in their extensive application across dis-
ciplines, from life sciences to finance, where they are used to extract valuable insights 
from large, noisy datasets. In particular, Touw et al. [5] highlight the efficacy of Random 
Forests in biological data mining, where they have become a preferred tool for manag-
ing complex, high-dimensional data. Their ability to handle nonlinear relationships and 
variable interactions makes them a powerful technique for feature importance analysis.

Proposed Method. In this paper, we propose a novel method for identifying depend-
ent features in an unsupervised learning setting. The goal is to distinguish dependent 
features from independent noise without making assumptions about the specific nature 
of these dependencies. The core idea relies on generating a synthetic dataset that breaks 
any existing dependencies between features by ensuring they are sampled independently.

Given a dataset D X X X n� �� �1 2, , , , where each Xi  is a feature, we generate a 
synthetic dataset S S S Sn� �� �1 2, , ,  where each Si  is drawn from the empirical distri-
bution of the corresponding Xi : S P Xi i� � � . Si  is constructed with replacement (i.e. 
each element of the original Xi  has a chance to appear multiple times in the synthetic 
dataset). It is crusial to note that each Si  is independent of the others S j  for j i≠  by 
design, as each Si  is constructed independently.

The synthetic dataset S  is constructed to be the same size as the original dataset D , 
with the key distinction being that the features in S  are independent by design. Depend-
encies, if present, exist only in the original dataset D .

To detect dependencies, we construct a new dataset Z  where the original data points 
are labelled as 1, and the synthetic data points are labelled as 0. This dataset structure 
can be summarised as follows:

Z X X D S S Si i i i� � � �� �� � � �� �, | , ,1 0 |

where S P Xi i� � �  and S S j ii j�� � � � � �is independentof for each ≠ .
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A Random Forest classifier is trained on this dataset Z, with the goal of distinguish-
ing between the original and synthetic data. The intuition is that features that help the 
classifier differentiate between D and S must contain dependencies that were broken in 
the synthetic dataset. The feature importance scores provided by the Random Forest 
classifier are used to rank the importance of each feature. Features with high importance 
scores are likely to be dependent on other features, while those with low importance are 
more likely to be independent noise.

In our proposed method, the performance of the Random Forest classifier is tuned by 
selecting optimal hyperparameters. Random Forest is a robust method with relatively few 
hyperparameters to tune, making the process efficient. Additionally, the accuracy metric 
used to evaluate the classifier’s ability to distinguish between original and synthetic data is 
intuitive and straightforward. We will perform a grid search to explore different combina-
tions of parameters, such as the number of trees, maximum depth, minimum samples per 
split and others. The optimised model with the highest accuracy will be used to generate 
feature importance scores, which will then be employed to identify dependent features.

We rely on Gini importance as implemented in ‘scikit-learn‘ [4], which measures 
how much a feature reduces impurity at each split in the decision trees.

By this approach, we can identify and discriminate dependent features. This method 
is compared against traditional techniques such as Pearson correlation, mutual infor-
mation, and correlation of distances to evaluate its performance in identifying complex 
feature dependencies.

Schema of the Proposed Method
The proposed method can be summarized in the following steps:
1.	 Input Dataset Processing
o	 Given input dataset D  with features X X X n1 2, , ,…
o	 Each feature Xi  represents a column of observations
2.	 Synthetic Dataset Generation
o	 Create synthetic dataset S  by independently sampling with replacement from 

each feature’s empirical distribution
o	 For each feature Xi , generate S P Xi i� � �
o	 Si  is independent of all other S j  for j i≠  by design, as each feature is sampled 

independently
3.	 Combined Dataset Construction
o	 Create dataset Z  by combining original and synthetic data
o	 Label original data points as 1: Xi ,1� �
o	 Label synthetic data points as 0: Si ,0� �
o	 Dataset Z  is perfectly balanced by design with equal number of 0 and 1 labels
4.	 Random Forest Training and Optimization
o	 Perform grid search over hyperparameters
o	 Use accuracy as optimization metric (optimal due to balanced classes)
o	 Train Random Forest with optimal hyperparameters on dataset Z
5.	 Feature Importance Analysis
o	 Extract Gini importance scores from optimized Random Forest
o	 Rank features based on importance scores
o	 Higher scores indicate likely dependent features
o	 Lower scores suggest independent (noise) features
This schema illustrates how the method transforms the unsupervised problem of 

detecting feature dependencies into a supervised learning task, leveraging the Random 
Forest classifier’s ability to identify important features that distinguish between the 
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original and synthetic datasets. And the balanced nature of the constructed dataset Z  
makes accuracy an ideal metric for hyperparameter optimization.

Competitor Methods
Pearson Correlation
Pearson correlation [6] is one of the methods we compare against in this paper. It is 

a statistical measure that quantifies the linear relationship between two continuous var-
iables. The Pearson correlation coefficient, denoted by r , ranges from −1  to 1 , where 
r =1  indicates a perfect positive linear relationship, r � �1  indicates a perfect negative 
linear relationship, and r = 0  suggests no linear relationship between the variables. The 
formula for Pearson correlation is:

r

X X Y Y

X X Y Y

i i

i i

�
� �
�

�
�

�

�
� �
�

�
�

�

�
�
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�
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�

�
�
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where Xi  and Yi  represent the individual data points, and X  and Y  are their respec-
tive means. Pearson correlation is widely used due to its simplicity and ease of interpre-
tation for linear relationships [6]. For this study, we use the implementation provided in 
the numpy library [7].

The main advantage of Pearson correlation is its straightforward calculation and 
its effectiveness in detecting linear dependencies between variables. However, its pri-
mary limitation is that it might miss nonlinear relationships, thus nonlinear relationships 
between features may go undetected, making it less effective for problems where the 
dependencies are more complex. Moreover, Pearson correlation assumes that the data is 
normally distributed and free of significant outliers, which can skew the results.

In our context, Pearson correlation is a useful baseline to detect linear dependencies 
between features. However, since we are concerned with capturing a broader range of 
relationships (including nonlinear and more complex dependencies), Pearson correla-
tion alone may miss important feature interactions that are critical for distinguishing 
dependent features from independent noise.

It is important to note that we will use absolute values of the Pearson correlation 
coefficient as we don’t care about the direction of the relationship, we only care about 
the existance of the relationship. Thus higher values of the absolute values of Pearson 
correlation coefficient indicate stronger relationships between features.

Mutual Information
Mutual information (MI) [8] is a key measure from information theory that quanti-

fies the amount of information obtained about one random variable through another. It 
captures both linear and nonlinear dependencies between variables, making it more ver-
satile than simpler measures like Pearson correlation. The mutual information I X Y;� �  
between two variables X  and Y  is defined as:

I X Y H X H Y H X Y; ,� � � � � � � � � � �
where H X� �  and H Y� �  are the entropies of the variables, and H X Y,� �  is their 

joint entropy. MI measures how much knowing one variable reduces uncertainty about 
the other, making it a robust tool for detecting dependencies, even in complex data-
sets. In the context of this paper, MI helps identify dependent features by quantifying 
the shared information between features, without assuming any specific linear relation-
ships. The higher the MI value is, the more dependent the features presumed to be.
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Mutual information is highly suited to detecting a broad range of dependencies, 
including nonlinear and conditional relationships, making it a powerful tool for identi-
fying dependent features in unsupervised settings. However, MI’s reliance on the choice 
of hyperparameters can introduce variability in the results. Despite these limitations, 
mutual information remains a robust method for feature dependency detection, comple-
menting the other methods we explore in this paper.

For the theoretical foundation of mutual information, we reference Cover and 
Thomas [8], and the practical estimation follows the implementation described in Kras-
kov et al. [9] and provided by ‘scikit-learn‘ [4].

Practical Estimation of Mutual Information
In practice, mutual information is estimated from sample data rather than theoretical 

distributions. This requires approximating the joint probability distributions of the fea-
tures using techniques such as k-nearest neighbours (k-NN). The method implemented 
in ‘scikit-learn‘ [4] for mutual information, based on work by Kraskov et al. [9], uses a 
nearest-neighbours approach to estimate MI from samples. The MI between two vari-
ables X  and Y  is estimated by considering the number of neighbouring points in the 
joint space of the variables, which provides an approximation of the shared information.

However, mutual information estimation through k-NN faces a hyperparameter 
selection issue–specifically, the choice of n neighbors_ , which controls how many 
neighbours are considered in the estimation process. Selecting too few neighbours may 
lead to underestimation, while selecting too many can smooth out dependencies, miss-
ing subtle relationships. For this study, we use the default settings provided by ‘scikit-
learn‘ to ensure consistency across simulations, but acknowledge that the choice of this 
parameter can significantly impact the results.

Correlation of Distances
Distance correlation, as discussed in [10], is a method for detecting both linear and 

nonlinear dependencies between variables. Unlike traditional correlation measures, it 
captures complex relationships by analyzing the distances between data points. This 
method is particularly effective at identifying nonlinear dependencies, which are often 
missed by simpler metrics like Pearson correlation [6].

Distance correlation is well-suited for identifying dependent features in unsuper-
vised settings due to its ability to capture a wide range of dependencies without assum-
ing a specific functional form. For theoretical insights, we refer to Székely et al. [10], 
and for practical implementation, we utilize the ‘dcor‘ library [10].

Higher values of distance correlation coefficient indicate stronger relationships 
between features.

Practical Estimation of Distance Correlation
For practical estimation, we rely on the ‘dcor‘ library, which implements distance 

correlation as described by Székely et al. [11]. The key parameter in this method is the 
exponent p, with a default value of 1, representing the exponent of the Euclidean dis-
tance. Adjusting this exponent can alter the method’s sensitivity to local versus global 
dependencies. For our simulations, we use the default settings in the ‘dcor‘ library [11], 
but recognize that changing this parameter can influence the detection of relationships.

Data Generation for Simulations
For our simulations, we generate a dataset with two types of features: independent 

noise features and dependent features. First, we create seven independent noise features, 
each sampled from a standard normal distribution with a mean of zero and a standard 
deviation of one. These features represent random noise with no dependencies.

Next, we generate three dependent features. The first two features, local_trigger 
and slope, are also sampled from a standard normal distribution and are independent of 
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each other. The third feature introduces dependency among the three. Specifically, when 
the value of local_trigger is less than zero, the third feature is sampled from a standard 
normal distribution independently. However, when local_trigger is greater than zero, 
the third feature is calculated as:

X � � �slope strength of noise random noise_ _ _
where random_noise is drawn from a normal distribution with a mean of zero and a 

standard deviation of one. Afterward, we normalise the third feature by subtracting its 
sample mean and dividing by its sample standard deviation, ensuring that it is scaled to 
a standard normal distribution. Please note that local_trigger and slope are generated 
once for the whole dataset and are the same for all samples in that dataset.

The total sample size for all features is 10000. We will repeat the simulation 
100  times to study the distribution of calculated statistics and the performance of 
the proposed method and competitors. It is important to note that there is no hidden 
meaning or “magic” behind the specific numbers used in the data generation process 
(seven independent features, three dependent features, 10000 samples, 100 repetitions 
per noise level). These values are used as default starting points for this study. Future 
research could explore how the method behaves with different numbers of features, 
noise strength, and sample sizes.

Simulation Results
Let us briefly review the structure and purpose of our simulations. We generate ran-

dom samples containing both dependent and independent features, with varying degrees 
of noise added to the dependent features. For each noise level, we generate multiple data-
sets to evaluate the effectiveness of different methods in terms of accuracy and statistical 
significance, as well as to study the distribution of the statistics produced by each method. 
For detailed simulation outputs and additional analysis, please refer to the appendix.

Accuracy Results

Table 1
Accuracy Results for Different Methods Across Noise Levels

Method Metric Noise=0.01 Noise=0.1 Noise=1.0 Noise=10.0
Distance Correlation Accuracy 0.448 0.447 0.690 0.680

Precision 0.496 0.496 0.690 0.680
Recall 0.823 0.820 1.000 1.000

Mutual Information Accuracy 0.414 0.424 0.647 0.408
Precision 0.465 0.473 0.647 0.466

Recall 0.790 0.803 1.000 0.767
Pearson Correlation Accuracy 0.437 0.437 0.441 0.449

Precision 0.489 0.489 0.491 0.499
Recall 0.803 0.803 0.813 0.817

Proposed Method Accuracy 1.000 1.000 1.000 0.563
Precision 1.000 1.000 1.000 0.720

Recall 1.000 1.000 1.000 0.720

The accuracy results in Table 1 demonstrate that competitor methods tend to label 
additional features as dependent, showing a tendency for false positives across all noise 
levels. In contrast, the proposed method achieved perfect accuracy results for each 
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degree of added noise, except for the highest noise one, where it still showed better 
accuracy results against competitors except for Distance Correlation.

Distribution Analysis

Table 2
Lognormal Distribution Test Results for Distance Correlation  

(Kolmogorov-Smirnov Test)
Noise Level Statistic Type Test Statistic p-value Type of aggregation

0.01 Dependent 0.066 0.759 Average
Independent 0.052 0.933 Average
Dependent 0.039 0.997 Maximum

Independent 0.075 0.595 Maximum
Dependent 0.083 0.476 Minimum

Independent 0.055 0.907 Minimum
0.10 Dependent 0.064 0.776 Average

Independent 0.061 0.828 Average
Dependent 0.040 0.995 Maximum

Independent 0.066 0.756 Maximum
Dependent 0.056 0.889 Minimum

Independent 0.050 0.950 Minimum
1.00 Dependent 0.057 0.885 Average

Independent 0.065 0.762 Average
Dependent 0.069 0.706 Maximum

Independent 0.072 0.655 Maximum
Dependent 0.064 0.788 Minimum

Independent 0.052 0.938 Minimum
10.00 Dependent 0.066 0.746 Average

Independent 0.055 0.905 Average
Dependent 0.053 0.928 Maximum

Independent 0.077 0.571 Maximum
Dependent 0.064 0.788 Minimum

Independent 0.042 0.992 Minimum

Table 3
Lognormal Distribution Test Results for Mutual Information  

(Kolmogorov-Smirnov Test)
Noise Level Statistic Type Test Statistic p-value Type of aggregation

1 2 3 4 5
0.01 Dependent 0.044 0.985 Average

Independent 0.081 0.504 Average
Dependent 0.077 0.566 Maximum

Independent 0.077 0.562 Maximum
Dependent 0.096 0.931 Minimum

Independent NA NA Minimum
0.10 Dependent 0.057 0.884 Average

Independent 0.055 0.911 Average
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1 2 3 4 5
Dependent 0.113 0.143 Maximum

Independent 0.060 0.848 Maximum
Dependent 0.121 0.780 Minimum

Independent NA NA Minimum
1.00 Dependent 0.062 0.819 Average

Independent 0.057 0.878 Average
Dependent 0.064 0.780 Maximum

Independent 0.057 0.886 Maximum
Dependent 0.154 0.202 Minimum

Independent NA NA Minimum
10.00 Dependent 0.058 0.867 Average

Independent 0.081 0.499 Average
Dependent 0.076 0.589 Maximum

Independent 0.056 0.889 Maximum
Dependent 0.176 0.227 Minimum

Independent NA NA Minimum

Table 4
Lognormal Distribution Test Results for Pearson Correlation  

(Kolmogorov-Smirnov Test)
Noise Level Statistic Type Test Statistic p-value Type of aggregation

0.01 Dependent 0.074 0.625 Average
Independent 0.094 0.324 Average
Dependent 0.057 0.877 Maximum

Independent 0.053 0.925 Maximum
Dependent 0.108 0.177 Minimum

Independent 0.110 0.168 Minimum
0.10 Dependent 0.074 0.622 Average

Independent 0.101 0.246 Average
Dependent 0.058 0.865 Maximum

Independent 0.064 0.787 Maximum
Dependent 0.131 0.060 Minimum

Independent 0.102 0.236 Minimum
1.00 Dependent 0.048 0.965 Average

Independent 0.084 0.452 Average
Dependent 0.065 0.772 Maximum

Independent 0.059 0.860 Maximum
Dependent 0.108 0.179 Minimum

Independent 0.107 0.186 Minimum
10.00 Dependent 0.071 0.670 Average

Independent 0.056 0.895 Average
Dependent 0.042 0.992 Maximum

Independent 0.050 0.951 Maximum
Dependent 0.125 0.082 Minimum

Independent 0.088 0.396 Minimum

Table 3 (Continued)
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Table 5
Lognormal Distribution Test Results for Proposed Method  

(Kolmogorov-Smirnov Test)
Noise Level Statistic Type Test Statistic p-value Type of aggregation

0.01 Dependent 0.092 0.348 Average
Independent 0.103 0.224 Average
Dependent 0.056 0.891 Maximum

Independent 0.099 0.260 Maximum
Dependent 0.092 0.351 Minimum

Independent 0.100 0.253 Minimum
0.10 Dependent 0.100 0.258 Average

Independent 0.100 0.257 Average
Dependent 0.081 0.506 Maximum

Independent 0.088 0.403 Maximum
Dependent 0.078 0.550 Minimum

Independent 0.114 0.139 Minimum
1.00 Dependent 0.274 <0.001* Average

Independent 0.301 <0.001* Average
Dependent 0.280 <0.001* Maximum

Independent 0.244 <0.001* Maximum
Dependent 0.166 0.007* Minimum

Independent 0.278 <0.001* Minimum
10.00 Dependent 0.085 0.445 Average

Independent 0.052 0.938 Average
Dependent 0.052 0.935 Maximum

Independent 0.074 0.614 Maximum
Dependent 0.068 0.724 Minimum

Independent 0.078 0.544 Minimum
* Indicates rejection of lognormal distribution hypothesis at 5% significance level

The Kolmogorov-Smirnov test results in Tables 2, 3, 4, and 5 examine the distribu-
tion of aggregated statistics (minimum, maximum, and average) across 100 simulation 
runs for each method. The results confirm that these aggregated statistics generally fol-
low a lognormal distribution at the 5% significance level for both the proposed method 
and competitors, with the notable exception of noise level 1.0. At this noise level, as 
indicated by asterisks in Table 5, all aggregation types (minimum, maximum, and aver-
age) reject the lognormal distribution hypothesis. It should be noted that some results 
for mutual information are marked as NA (Not Available) due to technical limitations in 
computing the statistics under certain conditions.

Mann-Whitney U Test Analysis
We conducted Mann-Whitney U tests (Table 6) to compare the minimum statistics 

values for dependent features against the maximum statistics values for independent 
features. This comparison is crucial because higher statistics values indicate stronger 
dependency signals between features. Therefore, optimal results would show a clear sep-
aration between the minimum dependent and maximum independent statistics values. 
We found that for competitor methods average maximum independent statistics were 
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higher than average minimum dependent statistics (column Dependent >  Independent 
is equal to False) for all noise levels, which indicates that the distinction between noise 
and dependent features might not be clear. On the other hand, for the proposed method, 
the average minimum dependent statistics were higher than the average maximum inde-
pendent statistics for all noise levels, except for noise level 10.00 (the largest noise level 
tested), and the difference is statistically significant (p-value = 0.001), indicating a clear 
separation between dependent and independent features.

Table 6
Mann-Whitney U Test Results

Method Noise 
Level

Statistic 
Type p-value Dependent > Independent

Distance Correlation 0.01 max vs min 1.0 False
0.10 max vs min 1.0 False
1.00 max vs min 1.0 False
10.00 max vs min 1.0 False

Mutual Information 0.01 max vs min 1.0 False
0.10 max vs min 1.0 False
1.00 max vs min 1.0 False
10.00 max vs min 1.0 False

Pearson Correlation (abs) 0.01 max vs min 1.0 False
0.10 max vs min 1.0 False
1.00 max vs min 1.0 False
10.00 max vs min 1.0 False

Proposed Method 0.01 max vs min 0.0* True
0.10 max vs min 0.0* True
1.00 max vs min 0.0* True
10.00 max vs min 0.999 False

* Indicates statistical significance at 5% level (p < 0.05)

t-Test Analysis
We conducted t-tests on log-transformed statistics (Table 7) to compare the min-

imum statistics values for dependent features against the maximum statistics values 
for independent features, after confirming that the statistics follow lognormal distri-
butions. Similar to the Mann-Whitney U test analysis, this comparison helps assess 
the separation between dependent and independent features. The results show that for 
competitor methods, the maximum independent statistics were higher than minimum 
dependent statistics across all noise levels, indicating poor separation. In contrast, the 
proposed method demonstrated clear separation with minimum dependent statistics 
being higher than maximum independent statistics for noise levels 0.01, 0.1, and 1.0, 
with statistical significance (p < 0.001). However, it’s worth noting that for noise level 
1.0, we could not confirm the lognormal distribution assumption for the proposed 
method’s statistics, so these particular t-test results should be interpreted with caution 
as the normality assumption may not hold. At the highest noise level (10.0), the pro-
posed method, like the competitors, failed to maintain separation between dependent 
and independent features.
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Table 7
t-Test Results on Log-Transformed Statistics

Method Noise Level Statistic Type p-value Dep > Ind
Distance Correlation 0.01 max vs min 1.000 False

0.10 max vs min 1.000 False
1.00 max vs min 1.000 False
10.00 max vs min 1.000 False

Mutual Information 0.01 max vs min 1.000 False
0.10 max vs min 1.000 False
1.00 max vs min 1.000 False
10.00 max vs min 1.000 False

Pearson Correlation (abs) 0.01 max vs min 1.000 False
0.10 max vs min 1.000 False
1.00 max vs min 1.000 False
10.00 max vs min 1.000 False

Proposed Method 0.01 max vs min <0.001* True
0.10 max vs min <0.001* True
1.00 max vs min <0.001* True
10.00 max vs min 0.999 False

* Indicates statistical significance at 5% level (p < 0.05)

Confidence Interval Analysis

Table 8
Confidence Intervals for Distance Correlation

Noise Level Statistic Type Lower Bound Upper Bound
0.01 Max Independent 0.022 0.035

Min Dependent 0.011 0.021
0.10 Max Independent 0.022 0.035

Min Dependent 0.011 0.021
1.00 Max Independent 0.022 0.035

Min Dependent 0.011 0.026
10.00 Max Independent 0.022 0.034

Min Dependent 0.011 0.026

Table 9
Confidence Intervals for Mutual Information

Noise Level Statistic Type Lower Bound Upper Bound
0.01 Max Independent 0.011 0.026

Min Dependent 0.000 0.020
0.10 Max Independent 0.011 0.026

Min Dependent 0.000 0.017
1.00 Max Independent 0.011 0.026

Min Dependent 0.000 0.041
10.00 Max Independent 0.011 0.025

Min Dependent 0.000 0.028
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Table 10
Confidence Intervals for Pearson Correlation (absolute values)

Noise Level Statistic Type Lower Bound Upper Bound
0.01 Max Independent 0.017 0.034

Min Dependent 0.000 0.048
0.10 Max Independent 0.017 0.034

Min Dependent 0.000 0.055
1.00 Max Independent 0.017 0.034

Min Dependent 0.000 0.040
10.00 Max Independent 0.018 0.033

Min Dependent 0.000 0.044

Table 11
Confidence Intervals for Proposed Method

Noise Level Statistic Type Lower Bound Upper Bound
0.01 Max Independent 0.081 0.090

Min Dependent 0.120 0.141
0.10 Max Independent 0.081 0.090

Min Dependent 0.119 0.143
1.00 Max Independent 0.083 0.100

Min Dependent 0.102 0.121
10.00 Max Independent 0.062 0.085

Min Dependent 0.059 0.083

The confidence intervals presented in Tables 8, 9, 10, and 11 were constructed 
assuming lognormal distributions of the test statistics, as supported by our Kolmogor-
ov-Smirnov test results. These intervals reveal important patterns in the discriminative 
power of each method. All competitor methods (Distance Correlation, Mutual Informa-
tion, and Pearson Correlation) exhibit similar patterns of substantial overlap between 
the confidence intervals of maximum independent and minimum dependent statistics 
across all noise levels. This consistent overlap suggests that these traditional methods 
face inherent challenges in reliably distinguishing between dependent and independ-
ent features. In contrast, the proposed method demonstrates different behavior, with 
non-overlapping confidence intervals for noise levels up to 1.00. This clear separation 
begins to diminish only at the highest noise level (10.00), where the intervals start to 
overlap. The maintenance of distinct confidence intervals under varying noise condi-
tions, compared to the consistent overlap seen in competitor methods, provides statisti-
cal evidence for the superior discriminative capability of our proposed method.

Conclusions. In this paper, we have presented a novel method for detecting feature 
dependencies based on random forest feature importance scores. Through simulations 
and comparative analysis with established methods like distance correlation, mutual 
information, and Pearson correlation, we have demonstrated several key findings:

First, our proposed method shows superior accuracy in detecting dependencies across 
different noise levels compared to traditional approaches. It only fell behind Distance 
Correlation at the highest tested noise level. While competitor methods tend to produce 
false positives, our method maintains perfect accuracy up to moderate noise levels and 
continues to outperform most other methods even under high noise conditions.
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Second, the confidence interval analysis reveals that our method provides better 
statistical separation between dependent and independent features. Unlike traditional 
methods, which show substantial overlap in their confidence intervals, our approach 
maintains distinct intervals until extreme noise levels, providing more reliable discrim-
ination between feature types.

Third, the robustness of our method shows its consistent performance across various 
noise levels, only showing degradation at the highest noise level (10.0). This stability 
is particularly valuable in real-world applications where the strength of dependencies 
may vary.

However, there are limitations and areas for future research. The method’s perfor-
mance degradation at very high noise levels suggests room for improvement in extreme 
conditions. Additionally, future work could explore the method’s behavior with different 
types of dependencies, varying numbers of features, and different sample sizes.

In conclusion, our proposed method represents a significant advancement in feature 
dependency detection, offering improved accuracy and reliability compared to tradi-
tional approaches. These improvements make it a valuable tool for various applications 
in data analysis and feature selection, particularly in scenarios where complex depend-
encies need to be identified in the presence of noise.

REFERENCES:
1.	Breiman, L., Friedman, J., Olshen, R. A., & Stone, C. J. (1984). Classification 

and regression trees  (1st ed.). Chapman and Hall/CRC.  https://doi.org/ 
10.1201/9781315139470

2.	Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.
org/10.1023/A:1010933404324

3.	Louppe, G. (2015). Understanding random forests: From theory to practice. arXiv 
preprint arXiv:1407.7502.https://arxiv.org/abs/1407.7502

4.	Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., 
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine 
learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

5.	Touw, W. G., Bayjanov, J. R., Overmars, L., Backus, L., Boekhorst, J., Wels, M., 
& van Hijum, S. A. F. T. (2013). Data mining in the life sciences with random forest: A 
walk in the park or lost in the jungle? Briefings in Bioinformatics, 14(3), 315–326. https://
doi.org/10.1093/bib/bbs034

6.	Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the 
correlation coefficient.  The American Statistician, 42(1), 59–66.  https://www.stat.
berkeley.edu/~rabbee/correlation.pdf

7.	Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., 
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., 
Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., 
Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy.  Nature, 
585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2

8.	Cover, T. M., & Thomas, J. A. (2005). Elements of information theory (pp. 13–55). 
John Wiley & Sons.  https://www.cs.columbia.edu/~vh/courses/LexicalSemantics/
Association/Cover&Thomas-Ch2.pdf

9.	Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating 
mutual information.  Physical Review E, 69, 066138.  https://doi.org/10.1103/
PhysRevE.69.066138

10.	Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and 
testing dependence by correlation of distances.  The Annals of Statistics, 35(6), 
2769–2794. https://doi.org/10.1214/009053607000000505



91
Комп’ютерні науки та інформаційні технології

11.	 Ramos-Carreño, C., & Torrecilla, J. L. (2023). dcor: Distance correlation 
and energy statistics in Python.  SoftwareX, 22, 101326.  https://doi.org/10.1016/j.
softx.2023.101326

APPENDIX:
1.	Simulation Code. https://github.com/arteml12345/Random-Forest-Based-

Method-for-Detecting-Feature-Dependencies
2.	Whole Simulation Output. https://github.com/arteml12345/Random-Forest-

Based-Method-for-Detecting-Feature-Dependencies/blob/main/full_simulation_
output.html

3.	Simulation Results, Raw Sample Output. https://github.com/arteml12345/
Random-Forest-Based-Method-for-Detecting-Feature-Dependencies/blob/main/
statistics.csv


