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The rapid integration of unmanned vehicles (UVs) into industries such as logistics, defence,
agriculture, and environmental monitoring has necessitated the development of advanced route
optimisation methodologies to enhance operational efficiency. Given their ability to operate
in hazardous environments and under diverse meteorological conditions, UVs offer significant
advantages over traditional transportation methods. However, optimising UV routes presents a
complex challenge due to the need to balance multiple, often conflicting, objectives, including
minimising travel distance and time, reducing fuel consumption, ensuring safety in varying
weather conditions, adapting to terrain constraints, and prioritising mission-critical tasks.
This study addresses the problem of multi-objective UV route optimisation by introducing a
decomposition-based approach that divides the optimisation process into two stages: (1) the
formation of a subset of candidate routes based on predefined constraints and (2) the selection
of the optimal route from this subset using a combination of the PROMETHEE (Preference
Ranking Organization Method for Enrichment Evaluation) method and heuristic algorithms.
The integration of these techniques enables effective decision-making by systematically
ranking alternative routes according to multiple evaluation criteria. The proposed methodology
efficiently reduces computational complexity, making it particularly suitable for large-
scale UV deployment scenarios. A comparative analysis of different optimisation strategies
demonstrates the effectiveness of the proposed approach. The results indicate that the method
reduces computational time and resource consumption while maintaining flexibility in dynamic
environments. By leveraging the PROMETHEE method for multi-criteria decision-making and
heuristic search techniques for rapid optimisation, the study provides a practical solution for
UV route planning, ensuring enhanced adaptability to operational constraints. The findings
contribute to ongoing research in UV logistics and mission planning by offering a structured
framework that balances efficiency, reliability, and computational feasibility in complex, multi-
objective optimisation tasks.

Key words: unmanned vehicles (UVs), multi-objective optimization, PROMETHEE, Branch-
and-Bound Method, decomposition of problem.

Cumonoe JI. L, Cumonoe €. Jl., 3aika b. I0. Jlexomnozuyititnuit nioxio 0o
OoazamokpumepianvHoi onmumizayii mapuipymie 6e3ninomHUX MPAHCHOPMHUX 3AC00i6

Lllsuoxa inmeepayis 6esninomnux mparcnopmuux sacoboie (bT3) y maxi eanysi, sk aocic-
MuKa, 0OOPoHa, CiNbebke 20CN00ApCmME0 Mma eKoN02IUHULL MOHIMOPUH2, 3yMOGUNA HeOOXiOHICIb
PO3POOKU NEpedosux Memooie ONMUMI3ayii Mapupymie 0is RiOBUUeHHS ONepayitinoi eghekmus-
Hocmi. 3ae0axu 30amnocmi npayioeamu @ Hebe3neyHux yMoeax ma 3a pizHOMAHimHux meme-
oponociunux obcmasun, BT3 maiomv 3uauni nepesacu HA0 MpaOUYILHUMU MemOOaMu MpaH-
cnopmyeanns. Ilpome onmumizayis mapwpymie bT3 € cknaonum 3a80anuaM, OCKiNbKU UMA2Ac
30ANAHCYBAHHS YUCLEHHUX, YACMO CYNEPeyusUx yiiel, SKIOUAOHU MIHIMI3ayilo i0cmaHi
il yacy nooopooici, 3HUICCHHA BUMPAM NATbHO20, 3a0e3neuenHs 6e3neKu 3a Pi3HUX NO20OHUX
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YMO8, adanmayio 00 obMediceHb pelbedhy ma npiopume3ayio KPUMUUHO BANCTUBUX 3AB0AHD.
Y yvomy docniooicenni pozensnymo npoonemy bazamokpumepianvHoi onmumizayii mapupymis
BT3 winsxom 6nposadarcenus nioxody, 3aCHOBAHO20 HA OEKOMNO3UYIL, WO PO3OIIAE NPoyec Onmu-
mizayii ha 06a emanu: (1) popmysantisi REOMHOMCUHU KAHOUOAMHUX MAPUPYMIE HA OCHOBI 3a0a-
HUX obMmedicend I (2) 6uUOIp ONMUMATLHO20 Mapuipymy 3 yiei nIOMHONCUHU 3 BUKOPUCHAHHAM
Kombinayii memody PROMETHEE (Preference Ranking Organization Method for Enrichment
Evaluation) ma espucmuunux aneopummis. lnmeepayis yux memoodie 3abe3neuye epexmusHe
NPUUHAMMS DileHb WISAXOM CUCMEeMAMUYHO20 PAHIICYSAHHS ATbIMEPHAMUSHUX MAPWPYMIE 3d
KilbKoMa Kpumepiamu OYiHI08AHHS. 3anponoHo8ana mMemooonozis 0036015€ IMEHUUMU 00YUC-
JIHOBANBHY CKAAOHICMb, WO pobums it 0CoOIU0 NPUOAMHOIO OIS CYEHAPIie MACUMadHO20 PO3-
eopmanns BT3. IlopisuanrbHuili ananiz pisHux cmpameziii onmumizayii 0eMoHCmpYye egheKkmug-
HICMb 3aNPONOHO6AH020 Niox00y. Ompumani pe3yrbmamu ceiouamy, uwjo Memoo CKOPOYYe uac
obuucnens i gumpamu pecypcie, 3a6e3neuyiony npu YyboMy SHy4Kicms y OUHAMIYHUX cepedosu-
wax. Buxopucmogyrouu memod PROMETHEE 013 6azamoxkpumepiaibH020 RPUtiHammsi piuiets
ma eBpUCMUYHI Memoou NOULYKY OJ1A WBUOKOT onmumizayii, 00Ci0HCeHHA NPONOHYE NPAKMUYHE
piwenns ons naanyeanus mapuwipymie bT3, 3abesneuyiouu nokpaweny adanmayilo 0o onepa-
yitiHux oomedxcenvb. Ompumani pe3yniomamu poonames HECOK y NOOANbULL OOCTIONHCEHHS 8 2Ay3i
nocicmuxu ma nianysanus miciti BT3, npononyrouu cmpykmyposanuii nioxio, wjo 6aiauncye mioc
epexmusHicmro, HAOIUHICMIO MA 0OYUCTIOBATILHOK OOYINLHICIMIO 6 CKAAOHUX 3a0a4ax bazamo-
KpumepiaivHoi onmumizayii.

Knrwouoei cnosa: 6esninomui mpancnopmui sacoou (bT3), bacamoxpumepianvua onmumisa-
yiss, PROMETHEE, memoo 2inox i medic, 0eKoMno3uyis 3a0ati.

Introduction. In recent years, the utilisation of unmanned vehicles (UVs) has under-
gone substantial expansion across a range of sectors, including defence, agriculture,
logistics, and environmental monitoring. This accelerated growth can be attributed to
their distinct advantages, including their exceptional agility, aptitude for operation in
perilous environments, and their capacity to function effectively under a wide range
of meteorological conditions. As UV adoption increases, there is a pressing need for
advanced methodologies to effectively plan and optimize their routes. The implementa-
tion of such optimisation techniques has the potential to enhance operational efficiency
and ensure seamless coordination of vehicles.

This study focuses on the multi-objective optimization of motor vehicle routes. It
explores optimization methods that account for conflicting criteria and constraints spe-
cific to UVs, such as distance, time, weather conditions, terrain, fuel consumption, risk
factors, and task prioritization. Such constraints include, but are not limited to, distance,
time, weather conditions, terrain, fuel consumption, risk factors and task prioritization.
The study pays particular attention to the application of the PROMETHEE method
(Preference Ranking Organization Methods for Enrichment Evaluation) and heuristic
algorithms for determining optimal routes and assigning them to specific vehicles.

The aim of the study. The primary objective of this research is to formulate and
validate effective methodologies for multi-objective vehicle route optimisation, with the
goal being to enhance efficiency and safety across a range of applications.

Analysis of recent research and publications. The optimisation of UV routes is a
complex challenge that involves balancing multiple conflicting criteria and constraints
[1]. Key factors in this process include distance, time, weather conditions, terrain, fuel
consumption, collision risks, and task priority. Addressing this challenge necessitates
the application of sophisticated mathematical models and algorithms to identify opti-
mal or near-optimal solutions within the framework of Pareto-optimal search problems.
Given the classification of multi-criteria UV route optimization as an NP-hard problem,
conventional algorithms often prove ineffective due to the complexity and large-scale
nature of the data involved [2].

Shevchuk et al. developed a transport route optimisation method using a neural net-
work trained on real or simulated data to estimate travel time and identify the fastest
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route. Numerical experiments validated the method across 32 scenarios, determining the
optimal network structure and the minimal required training dataset size [1]. Bahaeddin
Tiirkoglu and Hasan Eroglu explored the use of genetic algorithms in route optimisation
and demonstrated their effectiveness in solving complex problems such as the travelling
salesman and driver route planning. A key focus in their study was on the crossover
operator, which improved solutions by exploiting weaker candidates, with a case study
on optimising the routes of power transmission lines [2]. Xiuli Li investigated the opti-
misation of distribution routes for convenience store chains using an enhanced genetic
algorithm and demonstrated its superiority over the classical approach. The study shows
how this improvement can be practically applied to improve distribution efficiency and
economic benefits for convenience store chains [3].

In conclusion, developing innovative optimisation methods is essential for mini-
mising resource consumption while maintaining solution quality, especially given the
increasing complexity of modern transportation and logistics. The effectiveness of heu-
ristic methods, genetic algorithms, and machine learning has been demonstrated in solv-
ing complex routing problems, enabling efficient identification of near-optimal solu-
tions. As route optimisation remains a highly relevant challenge, these approaches not
only enhance distribution and transport planning but also offer valuable applications in
fields such as UV deployment, logistics, and emergency response.

Multi-objective route optimisation problem. The multi-objective UV route opti-
misation problem is a complex task that requires consideration of many different cri-
terions X =(X, U.X,) to determine the best route allocation [4]. The main goal is to
find a balanced solution that satisfies the various requirements and constraints imposed
on UVs.

Optimisation objectives can be divided into two subsets: those that maximise f(xl.I ) ,

and those that minimise f(x,2 ) , where X, = {x' } ,X, < X . The first subset _)"(xl.I )
includes criterions that demonstrate the desire to maximise the usefulness of the system
or the efficiency of the route. Among them are:

— reliability of communication: ensuring stable communication between the vehi-
cle and the dispatcher (server);

— bandwidth: maximising the number of deliveries or transported goods per unit
of time;

— quality of service: increasing customer satisfaction through timely deliveries.

The second subset f(xf) includes criterions whose indicators are minimised, where
X, = {x,.z} ,X, < X . The indicators of the second group include:

— route time: minimising the time required to complete a task;

— resource consumption: reduction of fuel or electricity costs;

— risk of accidents: decrease a likelihood of emergencies;

— environmental impact: reduction of harmful substances and noise emissions.

The formulation of a multi-objective optimisation problem involves the formulation
of a mathematical model that takes into account these objectives and their interactions
with each other [5]. This involves determining the objective function constraints for
each criterion and methods for weighting the criteria and for finding trade-off solutions.

The mathematical model of the multi-objective APC route optimisation problem can
be formulated as follows:

1 1 :
o; -f(x,. ) — min

(D

2 (2 ’
o; -f(x,. )%max
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by the constraints

Zg(xi]i) < bilﬂ (2)

>e(x)20, 3)

J
Zm}:I,Zoﬁ:l, (4)
_xl_ll,xizojizl’in’jzl’im’ (5)

where o),®’ are the weighting criteria coefficients of the set X, and X, respec-
), g (x?) are the functions for determining the actual indicators of the func-

tively; g(x,',. -
tioning criteria; b, are the existing system constraints.

Due to the NP-complexity of problems (1)-(5), the search for an optimal solution
requires significant computational resources, which complicates the use of traditional
optimisation methods. The stage-by-stage decomposition of the solution search allows
us to divide a complex problem into smaller subtasks, which significantly simplifies the
computation process and increases the efficiency of finding an optimal solution.

Decomposition of a multi-objective route optimisation problem. Decomposition
of the route optimisation problem is a promising approach to reduce the complexity of
NP-complete problems. It allows dividing the main problem into several subproblems,
each of which is solved sequentially, taking into account the relevant criteria and con-
straints and the results of the previous stage. This provides a more structured approach
and reduces the overall computational complexity. The decomposition consists of the
two following stages.

1. Formation of a subset of candidate routes: a preliminary selection of routes that
meet basic requirements, such as maximum length, route duration, budget constraints,
etc. The result is a set of potential routes that satisfy the initial requirements and elimi-
nate unacceptable options.

2. Optimal route selection: from the resulting subset, the route that best meets the
priorities and additional criteria, such as minimising total costs, maximising safety, or
taking into account climatic conditions, is selected.

This approach divides a complex problem into two simpler ones, making it easier to
find the optimal solution. Decomposition not only improves computational efficiency,
but also makes it easier to adapt to changing conditions and new constraints, which is
important for dynamic optimisation systems [6]. This approach increases the flexibility
and adaptability of the route planning process, contributing to more efficient resource
management and optimal results.

Size reduction of the alternatives set. The analysis of alternatives to determine
the optimal UV route is an important task, especially in the context of the develop-
ment of autonomous transport technologies and their application in various fields,
including transportation, military use, geological survey, agriculture, and environ-
mental monitoring. The multi-criteria nature of alternatives and the NP-complexity
of these tasks make it necessary to use methods that allow to systematise these cri-
terions and evaluate alternatives with regard to all aspects. The use of such methods
reduces the complexity of decision-making, as they provide a structured approach
to evaluating and comparing alternatives. This is especially important in the face of
numerous options, when it is difficult to choose the best solution without the use of
specialised methods.
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Methods such as PROMETHEE provide tools for effective analysis of multi-criteria
problems [7]. They allow to structure the criteria by importance and determine their
impact on the final decision. This helps to avoid subjective influence in the evaluation
of alternatives and ensure objective results. Given the increasing complexity of UV
route selection and the requirements for accuracy and efficiency, the use of alternative
analysis methods, such as PROMETHEE, is essential to ensure optimal selection and
successful mission execution.

The application of the PROMETHEE method allows selecting a subset of alternative
solutions based on the following parameters [8].

1. Multi-criteria decision: PROMETHEE allows to evaluate alternatives according
to different criterions and take into account their importance.

2. Criteria conflicts: PROMETHEE allows to balance conflicts of criterions by
assigning a weight to each of them.

3. Uncertainty and risk: PROMETHEE allows to take into account the uncertainty of
conditions and risks when making a decision [9].

4. Comprehensiveness of the analysis: PROMETHEE allows for a comprehensive
analysis of alternatives, taking into account different aspects.

5. Decision support: PROMETHEE provides tools for objective decision-making
based on data, which reduces the influence of subjective preferences.

These parameters make methods such as PROMETHEE useful and necessary for
analysing alternatives when selecting the optimal route for UVs. Accordingly, the PRO-
METHEE method is a multi-criteria decision-making method that allows ranking alter-
natives based on their relative superiority according to several criteria [10]. The main
idea is to compare each alternative with all others based on a set of criterions and make
a decision based on these comparisons.

To solve the first stage of choosing the optimal distribution of UV routes, the PRO-
METHEE algorithm can be as follows.

1. Determination of the set of alternatives A ={q, |i =1,...,n} and the set of criterions
X ={x,|j=1,..,m} by which the alternatives will be evaluated. The set consists of two
subsets X, and X,,ie. X =(X U.X,). Therefore, for a generalised analysis by the
PROMETHEE method, it is necessary to transform the functions to a single format. For
example, the criterions of both subsets X, and X, must be minimised by performing
the transformation max { /(x)} = min{—/(x)}.

2. Determination of criteria weights o, under the condition Z“)/ =1. The weights
of the criteria are determined by experts based on their importance for decision making.

3. Normalisation of the data matrix. Each alternative score for each criterion is nor-
malised against the maximum possible score and the minimum possible score by the
following formula:

v.(a)—v™"(a.
J i J i

4. Evaluation of the superiority function of a, over a, based on criterion a, :

H (a;a)=H(f (a,a,)), (7

H/-(a,-,ak)E[O,l],izﬁ,kzﬁ,kii,j:1,...,m, (8)

where f(a,,a,)=v (a)-v, (a,).
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Suppose that the superiority function has a linear shape (V-shape), then #(a,,a,)
can be calculated with the formula:

Lifv,0-v;(a,)> p,
Vj(ai)_vj(a/() . . T 1 .
H(a,a,)=y"——"——,if0<v,(a)-v,(a)<p,,i=Lnk=1,nk =i, )
j

0,ifv,(a,)-v,(a,)<0

where p; is the satisfactory level of the superiority threshold.
5. Evaluation of the weighted preference function of a, over a, based on crite-
rion a,:
J

F(anak):ZW;'Hj(ai’ak)av(anak)’ (10)
=

F(a;,a,)€[0.1], F(a,,a,)=0,i=1nk=1nk#i. (11)

6. Flow assessment for each alternative , :

6.1. The output flow ®"(a,) is the sum of the positive differences between the
scores of alternative a, and every other alternative a, across all criterions x,, where
i=Lnk=,nk=#i. Thus the output flow reflects the extent to which an alternatlve a,
dominates the other alternatives «, .

(oM (a)—”lZF(a,,ak) i= =ln (12)
ik
6.2. The input flow @ (q,) is the sum of the negative differences between the scores
of the other alternatives @, and the scores of the alternative a, across all criterions x;
where i =1,n,k =1,n,k #i . Accordingly, the input stream reﬂects the extent to which the
other alternatives a, dominate the alternative «, .

O (a)=-5D F(a,a),i=Lnk=1n (13)

i#k

6.3. Net flow is the difference between the output ®"(a,) and input @ (a,) flow for
each alternative g, . The formula of net flow is as follows:

AD(a) = D' (a) D (a,). (14)

7. Determining the superiority level of alternatives:

ala, if (@ (a,) =D (a,) A (D (a) =D (a,)), (15)

aPa,if {(cb*(ak) >0 (a)) A (D (a,) <D (a,)) ’ 16)
(CI)+ (aA») >Q° (a/)) N ((Di (ak) =0 (a/))

a,Qa, —others. 17)

Example 1. Using the input data (Table 1), determine the priority subset of alterna-
tives using the PROMETHEE method, provided that ‘A”’“”’ 10.
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Table 1
Input data

a Normalised criterion score for alternatives x i
' 1|23 ]4]5]6]7]8]9]10
1 09109051 [05/0,7]08(06]| 1 |07
2 1,0(07| 1 (07| 1 {03/05]05]|0,6]0.,8
3 05/08109(09(05(/09]07(07| 1 |08
4 080908 (06|09|06]|08|0,6]|0,6]|0,7
5 04/106[04(03|06|02]05(04]|09]0,8
6 04/105(09(04]08(03]09|08|051]0,8
7 09(106]109(05(05(10,7]0910,7|0,51]0,7
8 040908 (04(03(06]03(03]|0,7]0,4
9 06(071]107(09]09|09]061|09]|0,6]|0,8
10 0805 1 (0,7|06|06|09]06]|08]0,3
11 09104106 1 [{04/05]09|06]061]0,5
12 0511008 (0,7[08|0,6]06103]|0,51]0,9
13 03/05/08(06|05(03|061(09]|0,7]|0,3
14 1 109(08|04(04|04]02(0,7]|02]0,2
15 07(07103( 1 (060807 1 |051]0,5
Criterion cut-off threshold r,102(02)01]|0,1]02]|0,1]0,1[02]/0,2]0,1
Weight of the criterion , 0,3 10,1210,07{0,14|0,04(0,07|0,11 {0,04|0,09|0,02

Based on (12)-(13), the weighted superiorities of the alternatives and the input and
output flows are calculated. The results are shown in Table 2.

Table 2
The weighted superiorities of alternatives and flows

a, |1 |2[3|4]5|6|7|8[9ow0|n|n2|B|14|15] @)
1 — los7]041[051] 09 [076]039 078072 065032071 ]0,79 042065 061
2> oz - o4 fo047] 07 068059071 [039[048]045[051 058047049 052
3 o26[052] = Jo52]081067]049]077[045[053]039 051 082 044[043] 054
4 Joui]o34]oar] - [089]069]029 065[058[018]029]053[061] 04 [057] 047
s looa[o11[o04f011] = To8]013]029 011 ]015]027]0,13]029]026[017] 0,16
6 |o18]o15]008]018]037] — [009]027] 02 [0 [02 [024]039]036[023] 022
7 [o12]022] 03 (039073051 - [o67]048[037] 03 [055]063[037[049] 044
8 [007]025]007 006033028021 = o24]013]029]009] 04 [0,16 028 020
9 o19] 03 [028]026 078073 044 [072] = [043]031 053065 044023 045
10 (014031038028 0,73 066|031 076057 = [031 061062046 047 047
11 (016036034049 [073 [0,67| 03 [0,62]052[045] — [0.65[0,68] 04 054 049
12 02 026018016069 ]055[032]058] 02 [018[029] = [0,58]047[025] 035
13 o1 [0,18]008]0,15 045027 [024 [042 [0,17 [017[027 [0,17] = [o43 |02 | 024
14 [034]023]037 041 [067 [049 [039 [043 0,52 [0,53 [046 [041 [049 | = Jos6] 045
15 1006035 036025073 [0.67 [031 [071 [036 [039 [023 [ 06 [074 [044 | — | 044
o () [016]030]026]030]0,68]0,56]032]060]039[034]031]045]0,59039]040

Based on (14), the net flow Ad(q,) is calculated (Table 3).
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Table 3
The net flow

a; 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
A®D(a,)| 0,45 (0,22 [ 0,28 0,16 | -0,5 | -0,3 | 0,12 | -0,4 | 0,06 | 0,13 | 0,18 | -0,1 | -0,4 | 0,06 | 0,05

Table3 andthetermsoftheproblemsuggestthatasubsetofalternatives A" < A ,under
the condition |AP’°’” =10, will have the form 4" ={a,,a,,a,,a,,a,,a,,a,,a,,a,.,4,}.

Setting the route assignment. The second step in solving the UV route optimisation
problem is to assign alternative route options to certain UVs. One of the options for solv-
ing the assignment problem is the branch-and-bound method [11]. The branch-and-bound
method allows you to efficiently find optimal solutions in discrete optimisation problems,
avoiding a complete search of all possible options. This method guarantees finding an exact
solution, while significantly reducing the computation time compared to a full search. How-
ever, obtaining an exact solution to the UV route optimisation problem using the branch-
and-bound method requires large computing resources, as well as a significant amount of
memory to store the branching tree. In addition, each step in the branching process of the
algorithm is accompanied by an estimate of the deviation of the approximate solution from
the optimal solution. If an algorithm is used with a focus on finding g-approximate solutions
from the very beginning, this can lead to increased filtering, which in turn will reduce the
amount of information and, accordingly, reduce the number of problems to be solved [12].

Since at the first stage of solving the optimisation problem, a subset A”"" < A was
determined, the choice of priority routes «, that form a subset 4, will be performed
from the set 47", respectively, 4/ < A”*" . The choice of the route implies the priority
selection of alternatives with the highest net flow A®(a,) . Accordingly, the objective
function for selecting a priority route will be:

f(x)=> Ad(a))-r, - max, (18)
i=l
under the conditions
Zli “F + 1 < ZTTF’ (19)
i=1
l,ifa € 4
H=10 e (20)
0,ifa, ¢ 4
AD(a,)>0,0,l,. >0, a,>2a,,>..>2a, (21)
where /, is the distance from the location of the route start to the location of the alter-
native a, € A”""; I, is the distance from the location of the alternative a, to the location
of the alternative a,,,,i=2,n; [ /st is the distance from the last covered location of the
alternative a, € A”""; to the location of the route start; /. is the maximum UV move-

ment distance determined by tactical and technical characteristics.
An algorithm for finding a set of optimal routes, given the UV’s constraints (manda-
tory return to the launch location with an error of €) and the decision maker’s priorities:

1. L 0,0 0,17 2 0,AD(a,) # 0, n:= 0,m:=0.

2. Find the vertex: @, =max {A®(a,)},a, € A™", (Ii + l””’“"’) <, i=1+n.
3. 4'=4"U{a}.

4. 47" = A"\ 4.
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5.1f (ITTC -1, —lf’””h) > min {l,. la, e 47", i= 2,n} , then n:=+1, and go to step 2.

6. If A" =, then m:=+1, and go to step 2.

7. End of the algorithm.

Example 2. Assume that /,,. =25xw. Based on the results of Example 1, determine
the optimal routes and number of UVs required to cover a subset of A”". Distance
parameters are shown in Tables 4 and 5. Graph model of alternative UV routes is pre-
sented in Figure 1.

Table 4
Parameters of distance from the UV launch point and net flow
ai
1 2 3 4 7 9 10 11 14 15
AD(a,) 0,451 0,22 | 0,28 | 0,16 | 0,12 | 0,06 | 0,13 | 0,18 | 0,06 | 0,05
l; 9,11 68 | 54|81 |76 |51 |39 98] 78] 6,1
Table 5

Parameters of distance between vertexes

a, 1 2 3 4 7 9 [ 10 | 11 | 14| 15
1 0 | 54| 7224 31 ]18[09]76]91]21
2 s4a | o | 1525614983 73] 65 ] 37
3 72 115 0 [ 3139272809738l
4 24 [ 25 [ 31 ] 0 | 1,8 3976336271
7 30 | 61 |39 | 1,8 0 [ 81 ] 67 |34 ] 49 81
9 18 49 [ 27 [39 81 ] 0 [31 52 71]34
10 990 | 83 | 28 | 76 | 67 |31 ] 0o |32 [ 61 | 81
11 76 | 73 189 [ 33 |34 5232 o [37]29
14 o1 | 65 |73 |62 |49 |71 [ 61 |37 ] 0 |51
15 21 | 37 [ 81 [ 70 [ 81 [ 3481 2951 o

Fig. 1. Graph model of alternative UV routes




Komrm’rorepHi Hayku Ta iHdopmamniiiai TexHOMOril |

| 199

To calculate the optimal routes and the number of UVs, equations (18)-(22) and the
above algorithm for finding the set of optimal routes are used. The results are shown in
Figure 2 and Table 6.

Fig. 2. Model of UV optimal routes

Table 6
Results of route distribution
Hljl}w QH ?4)’%:[ 2 MapmpyT ZA@(a,.) le. » KM
A ={a,,a,,a;} a, —>a, > a, >a, —>a, 0,95 24,6
4, ={a,,a,.a,} a, = a,, —>a, >a,, —>a, 0,47 24.6
Ay ={a,,a,} a, = a, = a, >a, 0,18 20,8
A, ={a,.a;} ay, = a, — a; —a, 0,11 19,0

Based on results, four units of UVs are required to complete the task of covering the
vertices of the graph (each taking one of four alternative routes).

Evaluating the method effectiveness. To evaluate the effectiveness of the proposed
method, it is advisable to compare its operation with the most common method of route
allocation — the method of the quadratic assignment problem. Such a comparison will
allow us to identify the advantages and disadvantages of each approach in real-world
applications.

The Quadratic Assignment Problem (QAP) method is widely used to solve complex
combinatorial optimisation problems where it is necessary to distribute n objects to n
locations in such a way as to minimise the total cost. The popularity of this method is
due to its ability to accurately model various real-world situations, such as optimising
the location of production facilities, placing electronic components, planning medical
facilities, etc. The advantages of the QAP method include the following.

1. Versatility: QAP can be applied to a wide range of problems where an optimal
assignment needs to be found.

2. Modelling accuracy: QAP allows to take into account the complex relationships
between objects and places, which makes it useful for real systems.
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3. Flexibility: the ability to adapt the method to different types of problems and take
into account various constraints.

4. Sophistication: there are many algorithms and software for solving QAP.

The disadvantages of the QAP method include the following.

1. High computational complexity: QAP belongs to the class of NP-hard problems,
which makes its solution extremely time-consuming for large problem sizes.

2. Limited scalability: for large problems, the number of possible combinations
grows exponentially, making traditional methods inefficient.

3. The need for approximate methods: due to computational limitations, it is often
necessary to use heuristic or metaheuristic methods that do not always guarantee an
optimal solution.

The algorithms were compared by their execution time on different sizes of the input
matrix. Testing was conducted on modern hardware using an Intel Core i7 processor,
32 GB of RAM, and a solid-state drive. Matrices of different sizes from 3x3 to 500x500
were used, which allowed to evaluate the performance of the algorithms on different
problem scales. This experiment revealed how the proposed method copes with small
and large problems compared to the quadratic assignment problem method. The results
are shown in Figure 3.

1750 1 —— qup

—8— Dwcompasition rathod
1500 1
1250 4

1000 -

750 1

Time to solve the route optimisation
problem [seconds)

0 100 200 300 400 500
Size of the input matrix (nxn)

Fig. 3. Results of comparing the task solution time

As can be seen in Figure 3, the proposed method of decomposition of the multic-
riteria optimization problem of unmanned vehicle routes is a more efficient method
compared to the method of the quadratic assignment problem on large-size matrices.
The nature of the growth in the need for resources of the decomposition method is
almost linear, which allows predicting the necessary resources for solving optimisation
problems.

Conclusions. The paper considers the problem of multi-objective optimisation of
UV routes. A method of decomposition of the multiple-objective UV route optimisation
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problem is proposed, which allows dividing it into two stages: formation of a subset of
candidate routes and selection of the optimal route from this subset.

The considered examples of choosing the optimal route distribution and route assign-
ment and comparative analysis demonstrate the effectiveness of the proposed method.
The obtained results demonstrate that the proposed approach allows reducing resource
costs and find optimal solutions faster, ensuring a balance between the quality of results
and the cost of time and resources, especially for large input data sizes. This is achieved
by reducing the computational complexity of the optimisation problem and the ability
to quickly adapt to changing conditions.

Prospects for further research include improving existing methods and developing
new approaches to multi-objective optimisation, including the use of distributed algo-
rithms. This will further increase the efficiency of UVs in various fields of activity, such
as logistics, emergency services and environmental monitoring, ensuring more efficient
resource management and achieving optimal results.
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