PRODUCTS OBTAINED BY PROCESSING FISH RAW MATERIALS AND METHODS FOR THEIR ISOLATION

Authors

DOI:

https://doi.org/10.32851/tnv-tech.2022.3.16

Keywords:

fish raw materials, protein products, collagen, aquatic organisms, hydrolysates, waste-free processing, hydrolysis

Abstract

Processing of industrial fish is accompanied by the formation of secondary resources, the field of practical application of which is quite wide (fish proteins are a unique natural material used in various industries – food, microbiological, medical, etc.), but not fully used. Wastes from fish processing are a source of valuable nutrients and biologically active substances, and therefore serve as raw materials for various products, including biologically active additives. The aim of the article is to analyze processing technologies, methods of isolation and receiving of secondary fish raw materials. Modern fish production is accompanied by a large amount of protein-containing waste, ranging from 30 to 70% by weight of raw materials. Scientists have developed a number of technologies for collagen isolation and processing of fish raw materials. Development of theoretical and practical bases of technologies in the conditions of rational use of the basic and secondary resources of a fish origin is actual in the conditions of current ecological tension and problems of deficit of domestic analogues of high-tech materials on the basis of proteins of connective tissues of an aquatic origin. Protein-containing wastes are characterized by high nutritional properties, are a source of collagen and its hydrolysis products, which will be obtained by chemical and enzymatic hydrolysis. Traditional technologies are not effective, so scientists have proposed innovative methods and technologies for obtaining proteins, which in turn will have less effect on the initial properties of products isolated from secondary fish raw materials. The meat of aquatic organisms is rich in essential amino acids, vitamins, trace elements and is a valuable raw material for the production of dietary protein hydrolysates and the most valuable source of protein from an economic and environmental point of view. The search for new technologies is an urgent task, given the increasing use of fish collagen.

References

Кириллов А.И. Технология безотходной переработки коллагенсодержащих отходов от разделки гидробионтов: дис. на соиск. к.т.н. Санкт-Петербургский национальный исследовательский университет. 2016. С. 109.

Самойлова Д.А., Цибизова М.Е. Вторичные ресурсы рыбной промышленности как источник пищевых и биологически активных добавок. Вестник АГТУ. Сер.: Рыбное хозяйство. 2015. № 2. С. 129-146.

Хёлинг А., Гримм Т., Волков В.В., Мезенова О.Я., Мезенова Н.Ю. Инновационное получение протеинов из белоксодержащего биологического сырья. Вестник науки и образования Северо-Запада России. 2017. № 2. Т. 3. С. 1-11.

Дзюба Н.А. Визначення фармакологічних властивостей гідролізату колегена. Таврійський науковий вісник. 2022 . № 1. С. 86-96.

Jabeen F., Chaudhry A.S. Chemical compositions and fatty acid profiles of three freshwater fish species. Food Chem. Elsevier. 2011. № 3. Vol. 125. P. 991–996.

Gomez-Guillen M.C., Gimenez B., Lopez-Caballero M.E., Montero M.P. Functional and bioactive properties of collagen and gelatin from alternative sources. A review. Food Hydrocolloids. 2011. № 25. P. 1813-1827.

Тихонова Ю. В., Кривоносова Л. Г., Ломакин С. П., Филатова Э. С., Хабибуллин Р. Р. Свойства продуктов гидролиза коллагена. Башкирский химический журнал. 2009. № 1. Том 16. C.13-15.

Arvanitoyannis I.S., Kassaveti A. Fish industry waste: treatments, environmental impacts, current and potential uses. Int. J. food Sci. Technol. Wiley Online Library. 2008. № 4. Vol. 43. P. 726–745.

Ramos M., Valdes A., Beltran A., Garrigos M.C. Gelatin-based films and coatings for food packaging applications. Coatings. 2016. № 6. P. 41.

Bower C., Avena-Bustillos R., Olsen C., McHugh T., Bechtel P. Characterization of fish-skin gelatin gels and films containing the antimicrobial enzyme lysozyme. J. Food Sci. 2006. № 71. P. 141–145.

Fang J., Fowler P., Escrig C., Gonzalez R., Costa J., Chamudis L. Development of biodegradable laminate films derived from naturally occurring carbohydrate polymers. Carbohydr. Polym. 2005. № 60. P. 39–42.

Jafari H., Lista A., Siekapen M. M., Ghaffari-Bohlouli P., Nie L., Alimorandi H., Shavandi A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers. 2020. № 12 (10). Р. 2230.

Кушнір Н.А. Основи технології отримання колагену з рибної колагеновмісної сировини. Прогресивні техніка та технології харчових виробництв ресторанного господарства та торгівлі: зб. наук. пр. / відпов. ред. О.І. Черевко. – Харків: ХДУХТ. 2014. Вип. 1(19). C.107-116.

Dzyuba N., Bilenka I., Palvashova A., Zemlyakova E. Study into collagen hydrolyzate applicability as a structure forming agent. Eastern-European Journal of Enterprise Technologies. 2017. 5(11). P.10–17.

Дзюба Н. А., Землякова О. В. Розроблення композиції складу борошняних кондитерських виробів протекторної дії. Engineering sciences: development prospects in countries of Europe at the beginning of the third millennium: collective monograph. Stalowa Wola, Poland. 2018. Vol. 1. С. 155-174.

Кириллов А.И., Линчевская А.А, Куприна Е.Э. Безотходная технология переработки вторичных ресурсов рыбной промышленности для получения пищевых добавок с кальций обогащающими и хондропротекторными cвойствами. Известия Самарского научного центра Российской академии наук. 2013. № 3 (5). Т. 15. С. 1620-1624.

Shahid M. Isolation and characterization of collagen from fish waste materialskin, scales and fins of Catla catlaand Cirrhinus mrigala. Journal of Food Science and Technology. 2015. 52(7). P. 4296–4305.

Sionkowska, A., Grabska, S. Preparation and characterization of 3D collagen materials with magnetic properties. Polymer Testing. 2017. 62. Р. 382–391.

Se-Kwon K., Yong-Tae K, Hee-Guk B., Pyo-Jam P., Hisashi I. Purification and characterization of antioxidative peptides from bovine skin. Journal of Biochemistry and Molecular Biology. 2001. No. 3. Vol. 34.P. 219-224.

Zhang Z., Li C., Shi B. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. Journal of the Society of Leather Technologists and Chemists. 2005.Vol. 90. P. 23-29.

Zhang Y., Koguchi T., Simizu M. Chicken collagen hydrolysate protects rats from hypertension and cardiovascular damage. J. Med. Food. 2010. Vol. 13. P. 399-405.

Cao H., Chen M.-M., Liu Y., Liu Y.-Y., Huang Y.-Q., Wang J.-H., Chen J.-D., Zhang, Q.-Q. Fish collagen-based scaffold containing PLGA microspheres for controlled growth factor delivery in skin tissue engineering. Colloids Surf. B Biointerfaces. 2015. № 136. P. 1098–1106.

Петров И.Б., Клименко А.И. Комплексная переработка отходов рыбоперерабатывающих производств. Молодой ученый. Издательство «Молодой ученый». 2012. № 44. C. 61–63.

Ковалев Н.Н., Позднякова Ю. М., Перцева А. Д., Тун Ч. Состав и антиоксидантные свойства ферментативного гидролизата мышечной ткани трепанга. Пищевая промышленность. 2016. Т. 1. С.52-55.

Pal G.K., Suresh V. P. Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen. Materials Science & Engineering. 2016. Р. 37.

Новиков В.Ю., Деркач С.Р., Широнина А.Ю., Мухин В.А. Кинетические закономерности ферментативного гидролиза белков тканей гидробионтов: эффект способа внесения фермента. Вестник МГТУ. 2015. № 1. Том 18. С. 100-109.

Offengenden M., Chakrabarti S., Wu J. Chicken collagen hydrolysates differentially mediate anti-inflammatory activity and type I collagen synthesis on human dermal fibroblasts. Food Science and Human Wellness. 2018. Issue 2. Volume 7. P. 138-147.

Coppola D., Oliviero M, Vitale G.A., Lauritano C., D’Ambra I., Iannace S., de Pascale D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar. Drugs. 2020. № 18. P. 1-23.

Zhang M., Liu W., Li G. Isolation and characterisation of collagens from the skin of largefin longbarbel catfish (Mystus macropterus). Food Chem. 2009. № 115. P. 826–831.

Senaratne L., Park P.-J., Kim S.-K. Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin. Bioresour. Technol. 2006. № 97. P. 191–197.

Nagai T., Suzuki N. Isolation of collagen from fish waste material – Skin, bone and fins. Food Chem. 2000. № 68. P. 277–281.

Nagai T. Characterization of acid-soluble collagen from skins of surf smelt (Hypomesus pretiosus japonicas Brevoort). Food Nutr. Sci. 2010. № 1. P. 59.

Jongjareonrak A., Benjakul S., Visessanguan W., Nagai T., Tanaka M. Isolation and characterisation of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta). Food Chem. 2005. № 9. P.475–484.

Nagai T., Araki Y., Suzuki N. Collagen of the skin of ocellate pu_er fish (Takifugu rubripes). Food Chem. 2002. № 78. P. 173–177.

Published

2022-07-29

How to Cite

Олійник, М. І. (2022). PRODUCTS OBTAINED BY PROCESSING FISH RAW MATERIALS AND METHODS FOR THEIR ISOLATION. Таuridа Scientific Herald. Series: Technical Sciences, (3), 144-155. https://doi.org/10.32851/tnv-tech.2022.3.16