ARTIFICIAL INTELLIGENCE IN SYSTEMS ANALYSIS
DOI:
https://doi.org/10.32782/tnv-tech.2024.5.9Keywords:
artificial intelligence, AI, machine learning, system analysis, data analysis, system analyst, big data, testingAbstract
Tools based on artificial intelligence (AI) and machine learning (ML) help systems analysts automate routine tasks of data collection and analysis. This allows analysts to focus on more complex aspects of systems analysis. However, the requirements for the professionalism of specialists in the field of systems analysis are increasing, as new tasks appear that require a high level of knowledge and skills in the field of AI and data analytics. There are various specialized professions in the field of systems data analysis, including: systems analyst, data engineer, data analyst, data scientist, machine learning engineer, machine learning engineer, natural language processing specialist, business analyst, and others. And all of them now use a wide range of AI tools in their professional activities to improve the processes of analysis, modeling, and decision-making. The article analyzes the role and possible areas of application of AI and ML algorithms in the work of various big data analysis specialists. For each profession, possible AI tools that can be useful in the activities of relevant specialists to solve specific professional tasks are systematized and characterized. The paper found that ML tools help to identify patterns and anomalies, create forecasts and analytical models, and optimize processes in real time. AI allows us to integrate new forecasting and analytics methods, which contributes to accurate, timely decision-making at all stages of data processing. AI technologies change traditional approaches to data analysis and modeling. They create new opportunities for rapid development of solutions, increasing the efficiency of business processes and optimizing information systems. AI helps specialists ensure high data quality, automate the detection of anomalies and improve forecasts to support the strategic development of organizations, particularly in a rapidly changing market environment.
References
Dahmann Ju., DeLaurenits D. Unique Challenges in System of Systems Analysis, Architecting, and Engineering. Systems Engineering for the Digital Age. 2023.
P. 581-600. DOI: https://doi.org/10.1002/9781394203314.ch28
Aleryani A. Eliciting Client Requirements in Developing Information Systems Using Artificial Intelligence (Opportunities and Challenges). International Journal of Recent Engineering Science. 2024. Vol. 11(3). P. 126-133. DOI: https://doi.org/10.14445/23497157/IJRES-V11I3P115
Ozkaya I. An AI Engineer Versus a Software Engineer. IEEE Software. 2022. Vol. 39, Issue: 6. P. 4-7. DOI: https://doi.org/10.1109/MS.2022.3161756
Wang Ch., Lee B., Drucker S., Marshall D., Gao J. Data Formulator 2: Iteratively Creating Rich Visualizations with AI. arXiv. 2024. Vol. 2408.16119. DOI: https://doi.org/10.48550/arXiv.2408.16119
Johnson K., Lawrence A. AI/ML in Security Orchestration, Automation and Response: Future Research Directions. Intelligent Automation & Soft Computing. 2021. Vol. 28(2). P. 527-545. DOI: https://doi.org/10.32604/iasc.2021.016240
Abbasi M., Nishat R., Bond C., Graham-Knight B., Lasserre P., Lucet Y., Najjaran H. A Review of AI and Machine Learning Contribution in Predictive Business Process Management (Process Enhancement and Process Improvement Approaches). arXiv. 2024. Vol. 2407.11043. DOI: https://doi.org/10.48550/arXiv.2407.11043
Стрілець, М.І., Трофименко, О.Г. (2024). Стратегії та перспективи розвитку системного аналізу з впровадженням штучного інтелекту. Актуальні питання автоматизації та інформаційних технологій (АТІТ-2024): матер. III всеукр. наук.-практ. конф., 21–22 листопада 2024 р., Кременчук. https://atit.kdu.edu.ua/publ.php
Wang Ch., Lee B., Drucker S., Marshall D., Gao J. Data Formulator 2: Iteratively Creating Rich Visualizations with AI. arXiv. 2024. Vol. 2408.16119. DOI: https://doi.org/10.48550/arXiv.2408.16119
Role of Artificial Intelligence (AI) in System Design. URL: https://www.geeksforgeeks.org/role-of-artificial-intelligenceai-in-system-design/
Andersen G. Systems Analysis in Artificial Intelligence: Leveraging AI Technologies for Success. URL: https://moldstud.com/articles/p-systems-analysis-inartificial-intelligence-leveraging-ai-technologies-for-success
Crudu A. The Impact of Artificial Intelligence on Systems Analysis: What You Need to Know. URL: https://moldstud.com/articles/p-the-impact-of-artificialintelligence-on-systems-analysis-what-you-need-to-know
AI Analytics. URL: https://www.anodot.com/learning-center/ai-analytics/
Saharawat V. 15 Different Types of Data Scientists In 2024. URL: https://pwskills.com/blog/15-different-types-of-data-scientists-in-2024/
Data scientist, data analyst, data engineer. URL: https://robotdreams.cc/uk/blog/18-data-scientist-data-analyst-data-engineer
Torovets T. From Data Analyst to ML Engineer. URL: https://dou.ua/lenta/columns/choosing-position-in-data-science/
Srijani S. Top 13 Data Analyst Career Paths You Should Know About. URL: https://advisoruncle.com/data-analyst-career/
Crabtree M., Nehme A. What is Data Analysis? An Expert Guide With Examples. URL: https://www.datacamp.com/blog/what-is-data-analysis-expert-guide
Bimbi A. Becoming an AI Data Scientist: skills and job opportunities. URL: https://www.ai-scaleup.com/articles/jobs/ai-data-scientist/
Трофименко О. Г., Соколов А. В., Чикунов П. О., Ахмаметьєва Г. В., Манаков С. Ю. Штучний інтелект у військовій кіберсфері. Технології та інжиніринг. 2024. № 4(21). С. 85–92. DOI: https://doi.org/10.30857/2786-5371.2024.4.8.
Natural Language Processing (NLP) Specialist. URL: https://www.multiplymii.com/job-description/natural-language-processing-nlp-specialist
Data Architect: Roles, Responsibilities and How to Become One? URL: https://atlan.com/data-architect-roles-and-responsibilities/
Data Architect. URL: https://justjoin.it/job-offer/techtorch-data-architect-lodzdata