ASPECTS OF USING NEURAL NETWORKS TO IMPROVE THE QUALITY OF IMAGES
DOI:
https://doi.org/10.32782/tnv-tech.2024.6.1Keywords:
image quality, convolutional neural networks, recurrent neural networks, Non-local operations, image denoisingAbstract
The article presents an overview of image enhancement and noise reduction methods based on convolutional and recurrent neural networks with the addition of non-local operations blocks. These methods are widely used in various industries. In medicine, they help improve the quality of MRI images, which, in turn, contributes to the accuracy of doctors' diagnoses. In the field of security, these technologies enable image enhancement and detail enhancement. The article covers the main available approaches to image enhancement. The article analyzes the main characteristics of the considered neural networks, as well as the scenarios in which they demonstrate the greatest effectiveness. A table with the performance of different image enhancement methods is also presented, to which the investigated method is added to evaluate its effectiveness in image enhancement. The paper emphasizes the advantages of each of these approaches and their effectiveness in different conditions. Considering the specific features of the denoising task, such as the type of noise, image type, and processing constraints, will help select the most appropriate architecture to achieve the desired result. The article also discusses the use of the non-local operations block to improve image quality. This block serves to identify global interrelationships between pixels, which contributes to better modeling of relationships between different parts of the image. Thanks to the non-local operations block, it is possible to efficiently detect long-term dependencies and contextual information, which in turn leads to improved noise disaggregation and image restoration. The article offers a comprehensive overview of image enhancement and denoising methods that use convolutional and recurrent neural networks with the addition of a non-local operations block, and also provides information on existing approaches. The information and guidelines provided in this article can be helpful in choosing appropriate methods for solving image processing tasks. The article is useful for image processing and machine learning researchers who want to understand the main differences between convolutional neural networks (CNNs) and recurrent neural networks (RNN), as well as with already known approaches to improving and reducing noise in images.
References
Михайлов, В. С., Дослідження та розробка методів покращення зображень. 2019. http://openarchive.nure.ua/handle/document/11968 (дата звернення: 22.08.2024).
Зінченко О. В., Звенігородський О. С., Кисіль Т. М., Згорткові нейронні мережі для вирішення задач комп’ютерного зору. 2022. http://tit.dut.edu.ua/index.php/telecommunication/article/view/2417 (дата звернення: 22.08.2024).
Chao Dong, Chen Change Loy, Member, IEEE, Kaiming He, Member, IEEE, and Xiaoou Tang, Fellow, IEEE Image Super-Resolution Using Deep Convolutional Networks. 2015. https://arxiv.org/pdf/1501.00092.pdf (дата звернення: 22.08.2024).
Kai Zhang, Wangmeng Zuo, Lei Zhang Learning a Single Convolutional Super-Resolution Network for Multiple Degradations. 2018. https://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Learning_a_Single_CVPR_2018_paper.pdf (дата звернення: 22.08.2024).
Bohdan V. Chapaliuk, Yuriy P. Zaychenko Використання рекурентних нейронних мереж для автоматичної діагностики раку легенів. 2019 http://journal.iasa.kpi.ua/article/view/177906 (дата звернення: 22.08.2024).
Anakhov P., Zhebka V., Berkman L., Koretska V. Increasing Functional Stability of Telecommunications Network in the Depressed Zone of HPS Reservoir / Lecture Notes in Electrical Engineering, 2023, 965 LNEE, p. 214–230
Stamatios Lefkimmiatis Non-local Color Image Denoising with Convolutional Neural Networks. 2016. https://arxiv.org/pdf/1611.06757.pdf (дата звернення: 22.08.2024).
Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, Thomas S. Huang Non-Local Recurrent Network for Image Restoration. 2018. https://proceedings.neurips.cc/paper_files/paper/2018/file/fc49306d97602c8ed1be1dfbf0835ead-Paper.pdf (дата звернення: 22.08.2024).
Wang et al Non-Local Operation. 2018. https://paperswithcode.com/method/nonlocal-operation
Xiaolong Wang, Ross Girshick, Abhinav Gupta, Kaiming He Non-local Neural Networks. 2018 https://arxiv.org/pdf/1711.07971.pdf (дата звернення: 22.08.2024).
Chunwei Tian, Lunke Fei , Wenxian Zheng , Yong Xu , Wangmeng Zuo, Chia-Wen Lin Deep Learning on Image Denoising: An Overview. 2019. https://arxiv.org/pdf/1912.13171.pdf (дата звернення: 22.08.2024).