MULTI-OUTPUT REGRESSION MODELS FOR CONTROLLING MULTICOMPONENT DYNAMIC SYSTEMS
DOI:
https://doi.org/10.32782/tnv-tech.2024.6.12Keywords:
multivariate regression models, multicomponent systems, system state prediction, ensemble approaches, regularizationAbstract
Modern multi-component systems are characterized by the interaction of numerous internal components and external factors, which can exhibit both regular and chaotic behavior. Effective management of such systems requires tools capable of providing accurate state predictions under conditions of uncertainty and limited input data. This article explores the use of multioutput regression models, which enable the consideration of interdependencies among system components, optimization of the parametric space, and improvement in prediction accuracy. Multi-output models allow simultaneous forecasting of several aspects of a system's state, reducing errors and enhancing the generalization ability of the models. The article provides a detailed examination of methods to improve such models, including minimization of noise influence, accounting for the temporal scales of component changes, optimization for small data samples, and increasing the interpretability of predictions. Approaches to addressing data scarcity are proposed, such as knowledge sharing between tasks and the use of generative models. Special attention is given to the challenges of applying multi-output models, including the risks of overfitting, conflicts between optimization objectives, and the impact of correlation biases. Strategies to mitigate these risks are discussed, including adapting multi-criteria optimization, parameter regularization, and developing hierarchical models that can account for system dynamics across different time scales. Ensemble approaches, which integrate the outputs of submodels into a unified architecture, are highlighted for their ability to enhance noise robustness, prediction accuracy, and model adaptability to changing conditions. The approaches proposed in the article have practical significance for automating decision-making processes in complex multi-component systems operating under high variability and data limitations. This provides a comprehensive framework for forecasting, contributing to more effective management of dynamic systems across various domains. Thus, the article makes a significant contribution to the development of methodologies for modeling complex systems, expanding the possibilities for their analysis and management.
References
Jin X., Zhang J., Su T., Bai Y., Kong J., Wang X. Modeling and analysis of datadriven аsystems through computational neuroscience wavelet-deep optimized model for nonlinear multicomponent data forecasting. Computational Intelligence and Neuroscience. 2021. URL: https://doi.org/10.1155/2021/8810046
Симонов Д. І., Заіка Б. Ю. Моделювання управління складними інформаційними багатокомпонентними системами. Науковий вісник Ужгородського університету. Серія «Математика і інформатика». 2024. Вип. 44(1). С. 168–174. URL: https://doi.org/10.24144/2616-7700.2024.44(1).168-174
Daraghmeh M., Agarwal A., Jararweh Y. Optimizing serverless computing: A comparative analysis of multi-output regression models for predictive function invocations. Simulation Modelling Practice and Theory. 2024. Vol. 134. Article 102925. URL: https://doi.org/10.1016/j.simpat.2024.102925
Emami S. S., Martínez-Muñoz G. Deep learning for multi-output regression using gradient boosting. IEEE Access. 2024. Vol. 12. P. 17760–17772. URL: https://doi.org/10.1109/ACCESS.2024.3359115
Salehi F., Abbasi E., Hassibi B. The impact of regularization on high-dimensional logistic regression. ArXiv. 2019. Vol. abs/1906.03761. URL: https://doi.org/10.48550/arXiv.1906.03761
Tan C., Chen S., Ji G., Geng X. Multilabel distribution learning based on multioutput regression and manifold learning. IEEE Transactions on Cybernetics. 2020. Vol. 52. P. 5064–5078. URL: https://doi.org/10.1109/TCYB.2020.3026576
Khodarahmi M., Maihami V. A review on Kalman filter models. Archives of Computational Methods in Engineering. 2022. Vol. 30. P. 727–747. URL: https://doi.org/10.1007/s11831-022-09815-7
Guo L., Chen W., Liao Y., Liao H., Li J. Y. An edge-preserved image denoising algorithm based on local adaptive regularization. Journal of Sensors. 2016. Vol. 2016. Article ID 2019569:1–2019569:6. URL: https://doi.org/10.1155/2016/2019569
Tanaka G., Matsumori T., Yoshida H., Aihara K. Reservoir computing with diverse timescales for prediction of multiscale dynamics. Physical Review Research. 2022. Vol. 4, Iss. 3. Article L032014. URL: https://doi.org/10.1103/PhysRevResearch.4.L032014
Петрик Б. В., Неласа Г., Дубровін В. Аналіз часових послідовних потоків даних мережевого трафіку на основі вейвлет-перетворення. Прикладні питання математичного моделювання. 2020. Т. 3, № 1. С. 168–177. URL: https://doi.org/10.32782/2618-0340/2020.1-3.17
Salih A. M., Raisi‐Estabragh Z., Galazzo I. B., Radeva P., Petersen S. E., Lekadir K., Menegaz G. A perspective on explainable artificial intelligence methods: SHAP and LIME. Advanced Intelligent Systems. 2024. Article 2400304. URL: https://doi.org/10.1002/aisy.202400304
Wu Y., Zhou Y. Prediction and feature analysis of punching shear strength of two-way reinforced concrete slabs using optimized machine learning algorithm and Shapley additive explanations. Mechanics of Advanced Materials and Structures. 2023. Vol. 30. P. 3086–3096. URL: https://doi.org/10.1080/15376494.2022.2068209
Shin J. Feasibility of local interpretable model-agnostic explanations (LIME) algorithm as an effective and interpretable feature selection method: comparative fNIRS study. Biomedical Engineering Letters. 2023. Vol. 13. P. 689–703. URL: https://doi.org/10.1007/s13534-023-00291-x
Symonov D., Symonov Y. Methods for selecting models of functioning of multicomponent information and environmental systems. Scientific Journal «Mathematical Modeling». 2024. Vol. 1, No 50. P. 57–63. URL: https://doi.org/10.31319/2519-8106.1(50)2024.304943
Симонов Д. І. Метод ентропії як інструмент оптимізації складних систем. Журнал обчислювальної та прикладної математики. 2024. № 1. С. 49–58. URL: https://doi.org/10.17721/2706-9699.2024.1.04
Do N., Hoang V., Doan V. A novel non-profiled side channel attack based on multi-output regression neural network. Journal of Cryptographic Engineering. 2023. Vol. 14. P. 427–439. URL: https://doi.org/10.1007/s13389-023-00314-4
Li C., Rakitsch B., Zimmer C. Safe active learning for multi-output Gaussian processes. ArXiv. 2022. Vol. abs/2203.14849. URL: https://doi.org/10.48550/arXiv.2203.14849
Park M., Choi Y., Lee N., Kim D. SpReME: Sparse regression for multienvironment dynamic systems. ArXiv. 2023. Vol. abs/2302.05942. URL: https://doi.org/10.48550/arXiv.2302.05942
Choe B., Kang T., Jung K. Recommendation system with hierarchical recurrent neural network for long-term time series. IEEE Access. 2021. Vol. 9. P. 72033–72039. URL: https://doi.org/10.1109/ACCESS.2021.3079922
Zhou X., Zhai N., Li S., Shi H. Time series prediction method of industrial process with limited data based on transfer learning. IEEE Transactions on Industrial Informatics. 2023. Vol. 19. P. 6872–6882. URL: https://doi.org/10.1109/TII.2022.3191980
Wang C., Chen X., Wu C., Wang H. AutoTS: Automatic time series forecasting model design based on two-stage pruning. ArXiv. 2022. Vol. abs/2203.14169. URL: https://doi.org/10.48550/arXiv.2203.14169
Tsanas A., Xifara A. Energy efficiency [Dataset]. UCI Machine Learning Repository. 2012. URL: https://doi.org/10.24432/C51307