A STUDY OF THE MARKET OF TWO INTERCHANGEABLE GOODS FOR SUSTAINABILITY
DOI:
https://doi.org/10.32782/tnv-tech.2024.3.9Keywords:
market of two goods, interchangeable goods, equilibrium, stability, differential equations, price elasticityAbstract
This paper examines the equilibrium of a market model of two interchangeable goods under conditions of critical and general cases. The influence of economic forces, such as prices, sales volumes, intensity of competition and model parameters, on the stability of the equilibrium is considered. The purpose of the work is to study the stability of the market equilibrium of two interchangeable goods depending on economic forces and model parameters. The research uses methods of mathematical modeling, differential equations and stability theory. A system of differential equations is introduced that describes the dynamics of the market for two interchangeable goods. It is shown that the stability of the market equilibrium of two interchangeable goods depends on the values of economic forces and model parameters. Equilibrium equations for a first-order model of two interchangeable goods in the general and critical cases are obtained. The stability of the equilibrium of a first-order model of two interchangeable goods is studied depending on the economic forces of sellers, merchants, the state and competition parameters. Examples of stable and unstable equilibria of a first-order model of two interchangeable goods are given. In particular, it was found that: if the prices for both goods are low enough, then the market equilibrium is stable; if the prices for both goods are high enough, then the market equilibrium is unstable; If the price of one good is low enough and the price of another good is high enough, then the market equilibrium can be either stable or unstable, depending on the values of other economic forces and model parameters. The results of the study can be used to predict the behavior of the market for two interchangeable goods depending on changes in economic conditions. They can also be used to develop recommendations for managing the market of two interchangeable goods in order to ensure its sustainability.
References
Walras L. Elements d'Economie Politique Pure. Revue de Théologie et de Philosophie et Compte-rendu des Principales Publications Scientifiques. 1874. Vol. 7. P. 628–632.
URL: https://www.jstor.org/stable/44346456?seq =1#metadata_info_tab_contents 2. Arrow K. J., Debreu G. Existence of an Equilibrium for a Competitive Economy. Econometrica. 1954. Vol. 22. Issue 3. P. 265–290.
Risk, Uncertainty, and Profit (Boston MA: Hart, Schaffner and Marx; Houghton Mifflin), 1921. 381 p.
Андрейчикова А. М. Еволюція поглядів на проблему ризику в економічній науці. Економічний вісник Національного гірничого університет. 2014. № 1. (45). С.38-49.
Дебела І. М. Класифікація станів системи за вектором параметрів. Таврійський науковий вісник. Серія: Економіка. 2022. №11. C.114–119.
Димова Г.О., Ларченко О.В. Моделі і методи інтелектуального аналізу даних: навчальний посібник. Херсон : Книжкове видавництво ФОП Вишемирський В. С., 2021. 142 с.
Білоусова, Т. (2021). Математична модель оптимального ринку багатьох товарів. Таврійський науковий вісник. Серія: Економіка .2021. №10. С. 135-142.
Podlubny I. Fractional Differential Equtions. Mathematics in Science and Engineearing / I. Podlubny – Academic Press, San Diego, Calif, USA, 1993.