ЕFFECT OF OSMOTIC DEHYDRATION ON THE AMINO ACID COMPOSITION OF SORBUS AUCUPARIA
DOI:
https://doi.org/10.32851/tnv-tech.2022.3.19Keywords:
osmotic dehydration, Sorbus aucuparia, amino acids, nutritional supplementsAbstract
The effect of osmotic dehydration on the amino acid composition of Sorbus aucuparia was studied in this work. A method for processing Sorbus aucuparia fruits is proposed, which involves preliminary freezing, which makes it possible to reduce their bitterness and increase antioxidant properties by increasing the concentration of sorbic acid. During osmotic dehydration in a concentrated sugar solution (70%), part of the water (10-15%) is removed from the berries, which makes it possible to reduce energy costs for the drying process. The results of the amino acid spectrum showed that rowan fruits contain the highest concentration of the following amino acids mg/100g: serine – 65.41; proline – 35.82, aspartic acid – 20.07, glutamic acid – 14.96 and threonine 7.23. Together with the cell sap, part of the amino acids and other biologically active substances pass into the syrup. Some amino acids diffuse by almost 50%: threonine – 2.52 mg / 100 g (from 7.23), glycine – 0.3 mg / 100 g (from 0.79), alanine – 1.67 mg / 100 g ( s 2.25), lysine – 0.46 mg/100 g (s 1.12). The highest concentrations in powders made from processed rowan berries were glutamic acid – 1570 mg / 100 g, aspartic acid – 1250 mg / 100 g, ammonia – 490 mg / 100 g, glycine – 450 mg / 100 g and serine / 100 g. Glutamic acid, contained in large quantities in powders from rowan fruits, has a stabilizing effect on products during storage. It, as an additive E620, is added to canned food, food concentrates, culinary products to enhance their taste and fats to extend the shelf life. Drying allows you to increase the concentration of amino acids in the processed products of Sorbus aucuparia berries. Powders obtained in this way can become food additives with good organoleptic properties, capable of improving the amino acid composition of food products.
References
Samilyk М., Demidova E., Bolgova N., Kapitonenko А., Cherniavska T. Influence of adding wild berry powders on the quality of pasta products. «EUREKA: Life Sciences». 2022. Num. 2. P.28-35. DOI: 10.21303/2504-5695.2022.002410.
Samilyk M., Demidova E., Bolgova N., Savenko O., Cherniavska T. Development of bread technology with high biological value and increased shelf life. Eastern-European Journal of Enterprise Technologies. 2022. 2(11 (116)). 52–57. https://doi.org/10.15587/1729-4061.2022.255605.
Zlobin A. A., Martinson E. A., Litvinets S. G., Ovechkina I. A., Durnev, E. A., & Ovodova R. G. Pectin polysaccharides of rowan Sorbus aucuparia L. Russian Journal of Bioorganic Chemistry. 2012. 38(7). 702–706. https://doi.org/10.1134/S1068162012070242.
Tangney C. C., & Rasmussen H. E. Polyphenols, Inflammation, and Cardiovascular Disease. Current Atherosclerosis Reports. 2013. 15(5). 324. https://doi.org/10.1007/s11883-013-0324-x.
Shikov A. N., Pozharitskaya O. N., Makarov V. G., Wagner H., Verpoorte R., & Heinrich M. Medicinal plants of the Russian Pharmacopoeia; their history and applications. Journal of Ethnopharmacology. 2014. 154(3). 481–536. https://doi.org/10.1016/j.jep.2014.04.007.
Rutkowska M., Kolodziejczyk-Czepas J., Owczareka A., Zakrzewska A., Magiera A, A.Olszewska М. Novel insight into biological activity and phytochemical composition of Sorbus aucuparia L. fruits: Fractionated extracts as inhibitors of protein glycation and oxidative/nitrative damage of human plasma components Food Research International. 2021 Vol.147. 110526. https://doi.org/10.1016/j.foodres.2021.110526.
Hasbal G., Yilmaz Ozden T, Can A. In vitro Antidiabetic Activities of Two Sorbus Species. Eur J Biol. 2017. 76(2). 57-60.
Olszewska MA, Michel P. Antioxidant activity of inflorescences, leaves and fruits of three Sorbus species in relation to their polyphenolic composition. Nat Prod Res. 2009. 23(16). 1507-21.
Mrkonjić ZO, Nađpal J, Beara I, Sabo VA, Četojević-Simin D, Mimica-Dukić N, et al. Phenolic profiling and bioactivities of fresh fruits and jam of Sorbus species. J Serb Chem Soc. 2017. 82(6). 651-64.
Grussu D, Stewart D, McDougall GJ. Berry polyphenols inhibit α-amylase in vitro: identifying active components in rowanberry and raspberry. J Agr Food Chem. 2011. 59(6). 2324-31.
Boath AS, Stewart D, McDougall GJ. Berry components inhibit α-glucosidase in vitro: Synergies between acarbose and polyphenols from black currant and rowanberry. Food Chem. 2012. 135(3). 929-36.
Termentzi A., Alexiou P., Demopoulos V.J., Kokkalou E. The aldose reductase inhibitory capacity of Sorbus domestica fruit extracts depends on their phenolic content and may be useful for the control of diabetic complications. Die Pharmazie – An International Journal of Pharmaceutical Sciences, 2008. 63(9). 693–696(4). https://doi.org/10.1691/ph.2008.8567.
Оболкіна В., Сівний І., Крапивницька І. Новітня технологія заварного білкового крему із застосуванням пюре з горобини. Хлебный и кондитерский бизнес. 2015. № 6 (29). 32–33.
Гуменюк О.Л., Ксенюк М.П., Зінченко Ю.С., Деркач Т.Л. Доцільність використання плодів горобини для попередження пліснявіння хліба. Харчова промисловість. 2016. №19. 66-72.
Yadav A.K., Singh S.V. Osmotic dehydration of fruits and vegetables: a review. Food Sci Technol. 2014. № 51 (9). Р. 1654–1673.