СLASSIFICATIONS OF MACHINE LEARNING APPLICATION MODELS IN CYBER SECURITY

Authors

DOI:

https://doi.org/10.32782/tnv-tech.2023.4.2

Keywords:

artificial intelligence, machine learning, cyber security, cyber attack, automation

Abstract

The article examines the relationship between artificial intelligence (AI) and cybersecurity, analyzing the important challenges and opportunities arising from the rapid development of these two fields. In today’s world, where artificial intelligence is becoming more common and used in various industries, cyber security is becoming one of the most important aspects of information security and protection. The article explains that while AI can bring significant benefits, it also creates new threats and risks to cybersecurity. Overall, the article “Artificial Intelligence and Cybersecurity” offers a comprehensive overview of the relationship between these two fields, focusing on the challenges and opportunities associated with artificial intelligence in the context of cybersecurity. It emphasizes the need to develop effective measures to protect against threats arising from artificial intelligence and emphasizes the continuous improvement of cyber security strategies to ensure the security and protection of information. In the modern interpretation, artificial intelligence systems are machine learning systems, sometimes this is further narrowed down to artificial neural networks. If we are talking about the ever-widening penetration of machine learning into various areas of application of information technologies, then naturally there should be intersections with cyber security. But the problem is that such an intersection cannot be described by any one model. The combination of artificial intelligence and cyber security has many different application aspects. Common is, of course, the use of machine learning methods, but the tasks, and even the results achieved today, are different. For example, if the application of machine learning to detect attacks and intrusions shows real achievements against previously used approaches, then the attacks of the machine learning systems themselves completely defeat possible defenses. This article is devoted to the classification of machine learning application models in cyber security.

References

Kouliaridis, Vasileios, and Georgios Kambourakis. A comprehensive survey on machine learning techniques for android malware detection. Information 12.5.2021.

Yuan, Zhenlong, et al. Droid-sec: deep learning in android malware detection. Proceedings of the 2014 ACM conference on SIGCOMM. 2014.

Vinayakumar, R., et al. Robust intelligent malware detection using deep learning. IEEE Access 7. 2019.

Tajaddodianfar, Farid, Jack W. Stokes, and Arun Gururajan. Texception: a character/word-level deep learning model for phishing URL detection. ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020.

Basnet, Ram, Srinivas Mukkamala, and Andrew H. Sung. Detection of phishing attacks: A machine learning approach. Soft computing applications in industry. Springer, Berlin, Heidelberg. 2008.

Divakaran, Dinil Mon, and Adam Oest. Phishing Detection Leveraging Machine Learning and Deep Learning: A Review. arXiv preprint arXiv:2205.07411. 2022.

Твердохліб А.О., Коротін Д.С. Ефективність функціонування комп’ютерних систем при використанні технології блокчейн і баз данних. Таврійський науковий вісник. Серія: Технічні науки. 2022.

Цвик О.С. Аналіз і особливості програмного забезпечення для контролю трафіку. Вісник Хмельницького національного університету. Cерія: Технічні науки, (1). 2023,

Новіченко Є.О. Актуальні засади створення алгоритмів обробки інформації для логістичних центрів. Таврійський науковий вісник. Серія: Технічні науки, (1). 2023.

Зайцев Є.О. Smart засоби визначення аварійних станів у розподільних електричних мережах міст. Таврійський науковий вісник. Серія: Технічні науки, (5). 2022.

Shenfield, Alex, David Day, and Aladdin Ayesh. Intelligent intrusion detection systems using artificial neural networks. Ict Express 4.2. 2018.

Mishra, Preeti, et al. A detailed investigation and analysis of using machine learning techniques for intrusion detection. IEEE Communications Surveys & Tutorials 21.1. 2018.

Alsaheel, Abdulellah, et al. {ATLAS}: A sequence-based learning approach for attack investigation. 30th USENIX Security Symposium (USENIX Security 21). 2021.

Ongun, Talha, et al. Living-Off-The-Land Command Detection Using Active Learning. 24th International Symposium on Research in Attacks, Intrusions and Defenses. 2021.

Kok, S., et al. Ransomware, threat and detection techniques: A review. Int. J. Comput. Sci. Netw. Secur 19.2. 2019.

Wu, Yirui, Dabao Wei, and Jun Feng. Network attacks detection methods based on deep learning techniques: a survey. Security and Communication Networks. 2020.

Xin, Yang, et al. Machine learning and deep learning methods for cybersecurity.IEEE Access 6.2018.

Noor, Umara, et al. A machine learning framework for investigating data breaches based on semantic analysis of adversary’s attack patterns in threat intelligence repositories. Future Generation Computer Systems 95. 2019.

Published

2023-11-09

How to Cite

Антоненко, А. В., Бенедіко, І. В., Вічкарук, А. І., Лисенко, К. В., & Сижко, О. Ю. (2023). СLASSIFICATIONS OF MACHINE LEARNING APPLICATION MODELS IN CYBER SECURITY. Таuridа Scientific Herald. Series: Technical Sciences, (4), 11-22. https://doi.org/10.32782/tnv-tech.2023.4.2

Issue

Section

COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

Most read articles by the same author(s)

<< < 1 2